scispace - formally typeset
Search or ask a question
Author

Ryan Wen Liu

Bio: Ryan Wen Liu is an academic researcher from Wuhan University of Technology. The author has contributed to research in topics: Computer science & Image restoration. The author has an hindex of 16, co-authored 99 publications receiving 1023 citations. Previous affiliations of Ryan Wen Liu include Northeast Normal University & Wuhan University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
04 Aug 2017-Sensors
TL;DR: A multi-step trajectory clustering method that combines Dynamic Time Warping, a similarity measurement method, with Principal Component Analysis to decompose the obtained distance matrix and an automatic algorithm for choosing the k clusters is developed according to the similarity distance.
Abstract: The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW), a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA) is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our proposed method with traditional spectral clustering and fast affinity propagation clustering. Experimental results have illustrated its superior performance in terms of quantitative and qualitative evaluations.

134 citations

Journal ArticleDOI
TL;DR: Improved density-based spatial clustering of applications with noise (DBSCAN) algorithm is proposed to cluster spatial points to acquire the optimal cluster and a fusion of the MD, MDS, and improved DBSCAN algorithms can identify the course of trajectories and attain a better clustering performance.
Abstract: Automatic identification systems (AISs) serve as a complement to radar systems, and they have been installed and widely used onboard ships to identify targets and improve navigational safety based on a very high-frequency data communication scheme. AIS networks have also been constructed to enhance traffic safety and improve management in main harbors. AISs record vessel trajectories, which include rich traffic flow information, and they represent the foundation for identifying locations and analyzing motion features. However, the inclusion of redundant information will reduce the accuracy of trajectory clustering; therefore, trajectory data mining has become an important research direction. To extract useful information with high accuracy and low computational costs, trajectory mapping and clustering methods are combined in this paper to explore big data acquired from AISs. In particular, the merge distance (MD) is used to measure the similarities between different trajectories, and multidimensional scaling (MDS) is adopted to construct a suitable low-dimensional spatial expression of the similarities between trajectories. An improved density-based spatial clustering of applications with noise (DBSCAN) algorithm is then proposed to cluster spatial points to acquire the optimal cluster. A fusion of the MD, MDS, and improved DBSCAN algorithms can identify the course of trajectories and attain a better clustering performance. Experiments are conducted using a real AIS trajectory database for a bridge area waterway and the Mississippi River to verify the effectiveness of the proposed method. The experiments also show that the newly proposed method presents a higher accuracy than classical ones, such as spectral clustering and affinity propagation clustering.

123 citations

Journal ArticleDOI
TL;DR: This work proposes to develop a two-phase data-driven machine learning framework for vessel trajectory reconstruction that has the capacity of promoting intelligent vessel traffic services in 6G-enabled maritime IoT systems.
Abstract: Future generation communication systems, such as 5G and 6G wireless systems, exploit the combined satellite-terrestrial communication infrastructures to extend network coverage and data throughput for data-driven applications. These ground-breaking techniques have promoted the rapid development of Internet of Things (IoT) in maritime industries. In maritime IoT applications, intelligent vessel traffic services can be guaranteed by collecting and analyzing high volume of spatial data flows from automatic identification system (AIS). This AIS system includes a highly integrated automatic equipment, including functionalities of core communication, tracking, and sensing. The increased utilization of shipboard AIS devices allows the collection of massive trajectory data. However, the received raw AIS data often suffers from undesirable outliers (i.e., poorly tracked timestamped points for vessel trajectories ) during signal acquisition and analog-to-digital conversion. The degraded AIS data will bring negative effects on vessel traffic services (e.g., maritime traffic monitoring, intelligent maritime navigation, vessel collision avoidance, etc.) in maritime IoT scenarios. To improve the quality of vessel trajectory records from AIS networks, we propose to develop a two-phase data-driven machine learning framework for vessel trajectory reconstruction. In particular, a density-based clustering method is introduced in the first phase to automatically recognize the undesirable outliers. The second phase proposes a bidirectional long short-term memory (BLSTM)-based supervised learning technique to restore the timestamped points degraded by random outliers in vessel trajectories. Comprehensive experiments on simulated and realistic data sets have verified the dominance of our two-phase vessel reconstruction framework compared to other competing methods. It thus has the capacity of promoting intelligent vessel traffic services in 6G-enabled maritime IoT systems.

120 citations

Journal ArticleDOI
TL;DR: An enhanced convolutional neural network (CNN) is proposed to improve ship detection under different weather conditions by redesigning the sizes of anchor boxes, predicting the localization uncertainties of bounding boxes, introducing the soft non-maximum suppression, and reconstructing a mixed loss function.

118 citations

Journal ArticleDOI
TL;DR: Following a Bayesian modeling approach, a generalized total variation-based MRI denoising model is proposed based on global hyper-Laplacian prior and Rician noise assumption and has the properties of backward diffusion in local normal directions and forward diffusion inLocal tangent directions.

117 citations


Cited by
More filters
01 Jan 2016
TL;DR: The regularization of inverse problems is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can download it instantly.
Abstract: Thank you for downloading regularization of inverse problems. Maybe you have knowledge that, people have search hundreds times for their favorite novels like this regularization of inverse problems, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some infectious bugs inside their computer. regularization of inverse problems is available in our book collection an online access to it is set as public so you can download it instantly. Our book servers spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the regularization of inverse problems is universally compatible with any devices to read.

1,097 citations

Journal ArticleDOI
TL;DR: A new end-to-end model, termed as dual-discriminator conditional generative adversarial network (DDcGAN), for fusing infrared and visible images of different resolutions, which establishes an adversarial game between a generator and two discriminators.
Abstract: In this paper, we proposed a new end-to-end model, termed as dual-discriminator conditional generative adversarial network (DDcGAN), for fusing infrared and visible images of different resolutions. Our method establishes an adversarial game between a generator and two discriminators. The generator aims to generate a real-like fused image based on a specifically designed content loss to fool the two discriminators, while the two discriminators aim to distinguish the structure differences between the fused image and two source images, respectively, in addition to the content loss. Consequently, the fused image is forced to simultaneously keep the thermal radiation in the infrared image and the texture details in the visible image. Moreover, to fuse source images of different resolutions, e.g. , a low-resolution infrared image and a high-resolution visible image, our DDcGAN constrains the downsampled fused image to have similar property with the infrared image. This can avoid causing thermal radiation information blurring or visible texture detail loss, which typically happens in traditional methods. In addition, we also apply our DDcGAN to fusing multi-modality medical images of different resolutions, e.g. , a low-resolution positron emission tomography image and a high-resolution magnetic resonance image. The qualitative and quantitative experiments on publicly available datasets demonstrate the superiority of our DDcGAN over the state-of-the-art, in terms of both visual effect and quantitative metrics. Our code is publicly available at https://github.com/jiayi-ma/DDcGAN .

445 citations

Journal ArticleDOI
TL;DR: This paper showcases that even the most educated users of smart city services, i.e., those arguably most aware of and equipped with skills to use these services effectively, express very serious concerns regarding the utility, safety, accessibility and efficiency of those services.
Abstract: As research on smart cities garners increased attention and its status consolidates as one of the fanciest areas of research today, this paper makes a case for a cautious rethink of the very rationale and relevance of the debate. To this end, this paper looks at the smart cities debate from the perspectives of, on the one hand, citizens’ awareness of applications and solutions that are considered ‘smart’ and, on the other hand, their ability to use these applications and solutions. Drawing from a detailed analysis of the outcomes of a pilot international study, this paper showcases that even the most educated users of smart city services, i.e., those arguably most aware of and equipped with skills to use these services effectively, express very serious concerns regarding the utility, safety, accessibility and efficiency of those services. This suggests that more pragmatism needs to be included in smart cities research if its findings are to remain useful and relevant for all stakeholders involved. The discussion in this paper contributes to the smart cities debate in three ways. First, it adds empirical support to the thesis of ‘normative bias’ of smart cities research. Second, it suggests ways of bypassing it, thereby opening a debate on the preconditions of sustainable interdisciplinary smart cities research. Third, it points to new avenues of research.

259 citations

Posted Content
TL;DR: This survey provides an extensive overview of RL applications in a variety of healthcare domains, ranging from dynamic treatment regimes in chronic diseases and critical care, automated medical diagnosis, and many other control or scheduling problems that have infiltrated every aspect of the healthcare system.
Abstract: As a subfield of machine learning, reinforcement learning (RL) aims at empowering one's capabilities in behavioural decision making by using interaction experience with the world and an evaluative feedback. Unlike traditional supervised learning methods that usually rely on one-shot, exhaustive and supervised reward signals, RL tackles with sequential decision making problems with sampled, evaluative and delayed feedback simultaneously. Such distinctive features make RL technique a suitable candidate for developing powerful solutions in a variety of healthcare domains, where diagnosing decisions or treatment regimes are usually characterized by a prolonged and sequential procedure. This survey discusses the broad applications of RL techniques in healthcare domains, in order to provide the research community with systematic understanding of theoretical foundations, enabling methods and techniques, existing challenges, and new insights of this emerging paradigm. By first briefly examining theoretical foundations and key techniques in RL research from efficient and representational directions, we then provide an overview of RL applications in healthcare domains ranging from dynamic treatment regimes in chronic diseases and critical care, automated medical diagnosis from both unstructured and structured clinical data, as well as many other control or scheduling domains that have infiltrated many aspects of a healthcare system. Finally, we summarize the challenges and open issues in current research, and point out some potential solutions and directions for future research.

245 citations

Journal ArticleDOI
01 Mar 1978

234 citations