scispace - formally typeset
Search or ask a question
Author

Ryszard Horodecki

Bio: Ryszard Horodecki is an academic researcher from University of Gdańsk. The author has contributed to research in topics: Quantum entanglement & Quantum information. The author has an hindex of 44, co-authored 109 publications receiving 17049 citations. Previous affiliations of Ryszard Horodecki include Gdańsk University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

Journal ArticleDOI
TL;DR: In this article, necessary and sufficient conditions for the separability of mixed states were provided for 2 × 2 and 2 × 3 systems, where the positivity of the partial transposition of a state is sufficient and necessary for its separability.

2,854 citations

Journal ArticleDOI
TL;DR: Peres as mentioned in this paper showed that if a mixed state can be distilled to the singlet form it must violate partial transposition criterion, which implies that there are two qualitatively different types of entanglement.
Abstract: It is shown that if a mixed state can be distilled to the singlet form it must violate partial transposition criterion [A. Peres, Phys. Rev. Lett. 76, 1413 (1996)]. It implies that there are two qualitatively different types of entanglement: ``free'' entanglement which is distillable, and ``bound'' entanglement which cannot be brought to the singlet form useful for quantum communication purposes. A possible physical meaning of the result is discussed.

1,060 citations

Journal ArticleDOI
TL;DR: In this article, the authors prove a direct relation between the optimal fidelity of teleportation and the maximal singlet fraction attainable by trace-preserving local quantum and classical communication (LQCC) action.
Abstract: We prove a theorem on direct relation between the optimal fidelity ${f}_{\mathrm{max}}$ of teleportation and the maximal singlet fraction ${F}_{\mathrm{max}}$ attainable by means of trace-preserving local quantum and classical communication (LQCC) action. For a given bipartite state acting on ${C}^{d}\ensuremath{\bigotimes}{C}^{d}$ we have ${f}_{\mathrm{max}}{=(F}_{\mathrm{max}}d+1)/(d+1)$. We assume completely general teleportation scheme (trace preserving LQCC action over the pair and the third particle in unknown state). The proof involves the isomorphism between quantum channels and a class of bipartite states. We also exploit the technique of $U\ensuremath{\bigotimes}{U}^{*}$ twirling states (random application of unitary transformation of the above form) and the introduced analogous twirling of channels. We illustrate the power of the theorem by showing that any bound entangled state does not provide better fidelity of teleportation than for the purely classical channel. Subsequently, we apply our tools to the problem of the so-called conclusive teleportation, then reduced to the question of optimal conclusive increasing of singlet fraction. We provide an example of state for which Alice and Bob have no chance to obtain perfect singlet by LQCC action, but still singlet fraction arbitrarily close to unity can be obtained with nonzero probability. We show that a slight modification of the state has a threshold for singlet fraction, which cannot be exceeded anymore.

815 citations

Journal ArticleDOI
TL;DR: The necessary and sufficient condition for violating the CHSH inequality by an arbitrary mixed spin-1 2 state is presented in this paper, where some examples of mixtures which demonstrate the utility of the condition are considered.

645 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Dec 2010
TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.
Abstract: Part I. Fundamental Concepts: 1. Introduction and overview 2. Introduction to quantum mechanics 3. Introduction to computer science Part II. Quantum Computation: 4. Quantum circuits 5. The quantum Fourier transform and its application 6. Quantum search algorithms 7. Quantum computers: physical realization Part III. Quantum Information: 8. Quantum noise and quantum operations 9. Distance measures for quantum information 10. Quantum error-correction 11. Entropy and information 12. Quantum information theory Appendices References Index.

14,825 citations

Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

Journal ArticleDOI
TL;DR: It is proved that an EPP involving one-way classical communication and acting on mixed state M (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa, and it is proved Q is not increased by adding one- way classical communication.
Abstract: Entanglement purification protocols (EPPs) and quantum error-correcting codes (QECCs) provide two ways of protecting quantum states from interaction with the environment. In an EPP, perfectly entangled pure states are extracted, with some yield D, from a mixed state M shared by two parties; with a QECC, an arbitrary quantum state |\ensuremath{\xi}〉 can be transmitted at some rate Q through a noisy channel \ensuremath{\chi} without degradation. We prove that an EPP involving one-way classical communication and acting on mixed state M^(\ensuremath{\chi}) (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel \ensuremath{\chi}) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa. We compare the amount of entanglement E(M) required to prepare a mixed state M by local actions with the amounts ${\mathit{D}}_{1}$(M) and ${\mathit{D}}_{2}$(M) that can be locally distilled from it by EPPs using one- and two-way classical communication, respectively, and give an exact expression for E(M) when M is Bell diagonal. While EPPs require classical communication, QECCs do not, and we prove Q is not increased by adding one-way classical communication. However, both D and Q can be increased by adding two-way communication. We show that certain noisy quantum channels, for example a 50% depolarizing channel, can be used for reliable transmission of quantum states if two-way communication is available, but cannot be used if only one-way communication is available. We exhibit a family of codes based on universal hashing able to achieve an asymptotic Q (or D) of 1-S for simple noise models, where S is the error entropy. We also obtain a specific, simple 5-bit single-error-correcting quantum block code. We prove that iff a QECC results in high fidelity for the case of no error then the QECC can be recast into a form where the encoder is the matrix inverse of the decoder. \textcopyright{} 1996 The American Physical Society.

4,563 citations

Journal ArticleDOI
TL;DR: In this article, the properties of entanglement in many-body systems are reviewed and both bipartite and multipartite entanglements are considered, and the zero and finite temperature properties of entangled states in interacting spin, fermion and boson model systems are discussed.
Abstract: Recent interest in aspects common to quantum information and condensed matter has prompted a flurry of activity at the border of these disciplines that were far distant until a few years ago. Numerous interesting questions have been addressed so far. Here an important part of this field, the properties of the entanglement in many-body systems, are reviewed. The zero and finite temperature properties of entanglement in interacting spin, fermion, and boson model systems are discussed. Both bipartite and multipartite entanglement will be considered. In equilibrium entanglement is shown tightly connected to the characteristics of the phase diagram. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium entangled states are generated and manipulated by means of many-body Hamiltonians.

3,096 citations