scispace - formally typeset
Search or ask a question
Author

S. Anand Kumar

Bio: S. Anand Kumar is an academic researcher from Indian Institutes of Technology. The author has contributed to research in topics: Surface roughness & Materials science. The author has an hindex of 11, co-authored 41 publications receiving 371 citations. Previous affiliations of S. Anand Kumar include Indian Institute of Technology Madras & Visvesvaraya Technological University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of repeated laser peening treatment was studied to repair locally surface melted regions and the treatment has been found to be effective in re-establishing desired compressive stress pattern on the erstwhile tensile-stressed surface.

76 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the aspect ratio of the fillers on the fracture toughness of the glass-filled epoxy composites under impact loading was discussed and the potential of using Artificial Neural Networks (ANNs) in predicting the shape of the filler shape on fracture behavior was studied.

60 citations

Journal ArticleDOI
TL;DR: In this article, the artificial neural network technique using a multi-layer perceptron feed forward scheme was used to model and predict the mode-I fracture behaviour of particulate polymer composit.
Abstract: In this paper, the artificial neural network technique using a multi-layer perceptron feed forward scheme was used to model and predict the mode-I fracture behaviour of particulate polymer composit...

46 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of laser peening on the fretting wear behavior of Ti-6Al-4V was analyzed by transmission electron microscopy, which resulted in the formation of nanocrystallites on the surface and near surface regions, increased hardness, and compressive residual stress.
Abstract: This work deals with the influence of laser peening on the fretting wear behavior of Ti-6Al-4V. Laser peening was carried out on Ti-6Al-4V. The laser-peened surface was characterized by transmission electron microscopy. Surface roughness, nanoindentation hardness, residual stress, and tensile properties of the material in both laser-peened and unpeened conditions were determined. Fretting wear tests were conducted at different normal loads using a ball-on-flat contact geometry. Laser peening resulted in the formation of nanocrystallites on the surface and near-surface regions, increased hardness, and compressive residual stress. Laser peening did not affect the tensile properties and surface roughness significantly. There was no considerable difference between the values of the tangential force coefficient of laser-peened and unpeened samples. The fretting scar size, wear volume, and wear rate of laser-peened specimens were lower than those of unpeened samples. This may be attributed to an increase in sur...

44 citations

Journal ArticleDOI
TL;DR: In this article, the influence of impact angle on the erosion wear behavior of the hard composite coatings was analyzed using CFD simulation technique, and the results showed that the HVAF coating at highest spray velocity has superior erosion resistance compared to the high velocity oxygen fuel.

42 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: The laser shock peening (LSP) process using a Q-switched pulsed laser beam for surface modification has been reviewed and enhancements in the surface micro and nanohardness, elastic modulus, tensile yield strength and refinement of microstructure which translates to increased fatigue life and fretting fatigue life, stress corrosion cracking (SCC) and corrosion resistance were addressed.
Abstract: The laser shock peening (LSP) process using a Q-switched pulsed laser beam for surface modification has been reviewed. The development of the LSP technique and its numerous advantages over the conventional shot peening (SP) such as better surface finish, higher depths of residual stress and uniform distribution of intensity were discussed. Similar comparison with ultrasonic impact peening (UIP)/ultrasonic shot peening (USP) was incorporated, when possible. The generation of shock waves, processing parameters, and characterization of LSP treated specimens were described. Special attention was given to the influence of LSP process parameters on residual stress profiles, material properties and structures. Based on the studies so far, more fundamental understanding is still needed when selecting optimized LSP processing parameters and substrate conditions. A summary of the parametric studies of LSP on different materials has been presented. Furthermore, enhancements in the surface micro and nanohardness, elastic modulus, tensile yield strength and refinement of microstructure which translates to increased fatigue life, fretting fatigue life, stress corrosion cracking (SCC) and corrosion resistance were addressed. However, research gaps related to the inconsistencies in the literature were identified. Current status, developments and challenges of the LSP technique were discussed.

280 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the recent advancements of plant-based reinforced composites, focusing on strategies and breakthroughs in enhancing the NFRCs' performance, including fiber modification, fiber hybridization, lignocellulosic fillers incorporation, conventional processing techniques, additive manufacturing (3D printing), and new fiber source exploration.
Abstract: Demands for reducing energy consumption and environmental impacts are the major driving factors for the development of natural fiber–reinforced composites (NFRCs) in many sectors. Compared with synthesized fiber, natural fiber provides several advantages in terms of biodegradability, light weight, low price, life-cycle superiority, and satisfactory mechanical properties. However, the inherent features of plant-based natural fibers have presented challenges to the development and application of NFRCs, such as variable fiber quality, limited mechanical properties, water absorption, low thermal stability, incompatibility with hydrophobic matrices, and propensity to agglomeration. Substantial research has recently been conducted to address these challenges for improved performance of NFRCs and their applications. This article reviews the recent advancements of plant-based NFRCs, focusing on strategies and breakthroughs in enhancing the NFRCs’ performance, including fiber modification, fiber hybridization, lignocellulosic fillers incorporation, conventional processing techniques, additive manufacturing (3D printing), and new fiber source exploration. The sustainability of plant-based NFRCs using life-cycle assessment and the burgeoning applications of NFRCs with emphasis on the automotive industry are also discussed.

256 citations

Journal ArticleDOI
TL;DR: In this paper, an ultrasonic nanocrystalline surface modification (UNSM) technique was used to improve the fretting wear and friction characteristics of commercially pure titanium (CP Ti) and Ti-6Al-4V alloy.
Abstract: Application of surface modification techniques is expected to be a viable solution to mitigate fretting damage and to reduce friction. In this paper, the aim was to improve the fretting wear and friction characteristics of commercially pure titanium (CP Ti) and Ti–6Al–4V alloy by using an ultrasonic nanocrystalline surface modification (UNSM) technique. Lubricated fretting wear and friction tests were conducted with a ball-on-flat configuration on untreated and UNSM-treated specimens using silicon nitride (Si 3 N 4 ) balls. The results showed that the fretting wear and friction coefficient characteristics of the UNSM-treated specimens were improved compared to those of the untreated specimens. Moreover, it was found that the fretting wear scar diameter and depth of the UNSM-treated specimens were smaller and shallower compared to those of the untreated specimens. Surface analysis was performed using a scanning electron microscope (SEM).

178 citations

Journal ArticleDOI
TL;DR: In this paper , the authors comprehensively review recent advances on development of ultrafine-grained and nanostructured materials by severe plastic deformation and provide a brief history regarding the progress of this field.
Abstract: Severe plastic deformation (SPD) is effective in producing bulk ultrafine-grained and nanostructured materials with large densities of lattice defects. This field, also known as NanoSPD, experienced a significant progress within the past two decades. Beside classic SPD methods such as high-pressure torsion, equal-channel angular pressing, accumulative roll-bonding, twist extrusion, and multi-directional forging, various continuous techniques were introduced to produce upscaled samples. Moreover, numerous alloys, glasses, semiconductors, ceramics, polymers, and their composites were processed. The SPD methods were used to synthesize new materials or to stabilize metastable phases with advanced mechanical and functional properties. High strength combined with high ductility, low/room-temperature superplasticity, creep resistance, hydrogen storage, photocatalytic hydrogen production, photocatalytic CO2 conversion, superconductivity, thermoelectric performance, radiation resistance, corrosion resistance, and biocompatibility are some highlighted properties of SPD-processed materials. This article reviews recent advances in the NanoSPD field and provides a brief history regarding its progress from the ancient times to modernity. Abbreviations: ARB: Accumulative Roll-Bonding; BCC: Body-Centered Cubic; DAC: Diamond Anvil Cell; EBSD: Electron Backscatter Diffraction; ECAP: Equal-Channel Angular Pressing (Extrusion); FCC: Face-Centered Cubic; FEM: Finite Element Method; FSP: Friction Stir Processing; HCP: Hexagonal Close-Packed; HPT: High-Pressure Torsion; HPTT: High-Pressure Tube Twisting; MDF: Multi-Directional (-Axial) Forging; NanoSPD: Nanomaterials by Severe Plastic Deformation; SDAC: Shear (Rotational) Diamond Anvil Cell; SEM: Scanning Electron Microscopy; SMAT: Surface Mechanical Attrition Treatment; SPD: Severe Plastic Deformation; TE: Twist Extrusion; TEM: Transmission Electron Microscopy; UFG: Ultrafine Grained GRAPHICAL ABSTRACT IMPACT STATEMENT This article comprehensively reviews recent advances on development of ultrafine-grained and nanostructured materials by severe plastic deformation and provides a brief history regarding the progress of this field.

136 citations