scispace - formally typeset
Search or ask a question
Author

S. Ansar Ahmed

Bio: S. Ansar Ahmed is an academic researcher from Virginia–Maryland Regional College of Veterinary Medicine. The author has contributed to research in topics: Immune system & Systemic lupus erythematosus. The author has an hindex of 33, co-authored 74 publications receiving 5810 citations. Previous affiliations of S. Ansar Ahmed include University of Texas Health Science Center at San Antonio & Başkent University.


Papers
More filters
Journal ArticleDOI
TL;DR: The pattern of concanavalin A (ConA) or anti-CD3 antibody-induced proliferative response of murine lymphocytes as assessed by Alamar Blue was similar to that of a [3H]thymidine assay, which allows daily monitoring of proliferation without compromising the sterility of cultures.

1,360 citations

Journal Article
TL;DR: The possibility of using sex hormone modulation of immune responses for the treatment of autoimmune disorders is a promising area for future investigation.
Abstract: Immune reactivity is greater in females than in males. In both experimental animals and in man there is a greater preponderance of autoimmune diseases in females, compared with males. Studies in many experimental models have established that the underlying basis for this sex-related susceptibility is the marked effects of sex hormones. Sex hormones influence the onset and severity of immune-mediated pathologic conditions by modulating lymphocytes at all stages of life, prenatal, prepubertal, and postpubertal. However, despite extensive studies, the mechanisms of sex hormone action are not precisely understood. Earlier evidence suggested that the sex hormones acted via the thymus gland. In recent years it has become apparent that sex hormones can also influence the immune system by acting on several nonclassic target sites such as the immune system itself (nonthymic lymphoid organs), the central nervous system, the macrophage-macrocyte system, and the skeletal system. Immunoregulatory T cells appear to be most sensitive to sex hormone action among lymphoid cells. Several mechanisms of action of sex hormones are discussed in this review. The possibility of using sex hormone modulation of immune responses for the treatment of autoimmune disorders is a promising area for future investigation.

842 citations

Journal ArticleDOI
TL;DR: The identification of specific miRNA expression patterns in autoimmune diseases as well as a comprehensive understanding of the role of miRNA in disease pathogenesis offers promise of not only novel molecular diagnostic markers but also new gene therapy strategies for treating SLE and other inflammatory autoimmune diseases.

399 citations

Journal ArticleDOI
TL;DR: Since estrogen has varied effects in female-predominant autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus, it is mechanistically postulate the potential differential role of estrogen in these chronic debilitating diseases.
Abstract: Analogous to other physiological systems, the immune system also demonstrates remarkable sex differences. Although the reasons for sex differences in immune responses are not precisely understood, it potentially involves differences in sex hormones (estrogens, androgens, and differential sex hormone receptor-mediated events), X-chromosomes, microbiome, epigenetics among others. Overall, females tend to have more responsive and robust immune system compared to their male counterparts. It is therefore not surprising that females respond more aggressively to self-antigens and are more susceptible to autoimmune diseases. Female hormone (estrogen or 17β-estradiol) can potentially act on all cellular subsets of the immune system through estrogen receptor-dependent and -independent mechanisms. This minireview highlights differential expression of estrogen receptors on immune cells, major estrogen-mediated signaling pathways, and their effect on immune cells. Since estrogen has varied effects in female-predominant autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus, we will mechanistically postulate the potential differential role of estrogen in these chronic debilitating diseases.

315 citations

Journal ArticleDOI
TL;DR: These beneficial effects were present in female and castrated male mice, but not in intact males, suggesting that the gut microbiota controls lupus nephritis in a sex hormone-dependent manner, and demonstrates essential mechanisms on how changes of the Gut microbiota regulate l upus-associated immune responses in mice.
Abstract: Systemic lupus erythematosus, characterized by persistent inflammation, is a complex autoimmune disorder with no known cure. Immunosuppressants used in treatment put patients at a higher risk of infections. New knowledge of disease modulators, such as symbiotic bacteria, can enable fine-tuning of parts of the immune system, rather than suppressing it altogether. Dysbiosis of gut microbiota promotes autoimmune disorders that damage extraintestinal organs. Here we report a role of gut microbiota in the pathogenesis of renal dysfunction in lupus. Using a classical model of lupus nephritis, MRL/lpr, we found a marked depletion of Lactobacillales in the gut microbiota. Increasing Lactobacillales in the gut improved renal function of these mice and prolonged their survival. We used a mixture of 5 Lactobacillus strains (Lactobacillus oris, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus johnsonii, and Lactobacillus gasseri), but L. reuteri and an uncultured Lactobacillus sp. accounted for most of the observed effects. Further studies revealed that MRL/lpr mice possessed a “leaky” gut, which was reversed by increased Lactobacillus colonization. Lactobacillus treatment contributed to an anti-inflammatory environment by decreasing IL-6 and increasing IL-10 production in the gut. In the circulation, Lactobacillus treatment increased IL-10 and decreased IgG2a that is considered to be a major immune deposit in the kidney of MRL/lpr mice. Inside the kidney, Lactobacillus treatment also skewed the Treg-Th17 balance towards a Treg phenotype. These beneficial effects were present in female and castrated male mice, but not in intact males, suggesting that the gut microbiota controls lupus nephritis in a sex hormone-dependent manner. This work demonstrates essential mechanisms on how changes of the gut microbiota regulate lupus-associated immune responses in mice. Future studies are warranted to determine if these results can be replicated in human subjects.

255 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is emphasized that sex is a biological variable that should be considered in immunological studies and contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females.
Abstract: Males and females differ in their immunological responses to foreign and self-antigens and show distinctions in innate and adaptive immune responses. Certain immunological sex differences are present throughout life, whereas others are only apparent after puberty and before reproductive senescence, suggesting that both genes and hormones are involved. Furthermore, early environmental exposures influence the microbiome and have sex-dependent effects on immune function. Importantly, these sex-based immunological differences contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females. Here, we discuss these differences and emphasize that sex is a biological variable that should be considered in immunological studies.

3,214 citations

Journal ArticleDOI
TL;DR: The identity of Alamar Blue is shown as resazurin, a very simple and versatile way of measuring cell proliferation and cytotoxicity that presents numerous advantages over other cytot toxicity or proliferation tests but there are several drawbacks to the routine use.
Abstract: We show here the identity of Alamar Blue as resazurin. The 'resazurin reduction test' has been used for about 50 years to monitor bacterial and yeast contamination of milk, and also for assessing semen quality. Resazurin (blue and nonfluorescent) is reduced to resorufin (pink and highly fluorescent) which is further reduced to hydroresorufin (uncoloured and nonfluorescent). It is still not known how this reduction occurs, intracellularly via enzyme activity or in the medium as a chemical reaction, although the reduced fluorescent form of Alamar Blue was found in the cytoplasm and of living cells nucleus of dead cells. Recently, the dye has gained popularity as a very simple and versatile way of measuring cell proliferation and cytotoxicity. This dye presents numerous advantages over other cytotoxicity or proliferation tests but we observed several drawbacks to the routine use of Alamar Blue. Tests with several toxicants in different cell lines and rat primary hepatocytes have shown accumulation of the fluorescent product of Alamar Blue in the medium which could lead to an overestimation of cell population. Also, the extensive reduction of Alamar Blue by metabolically active cells led to a final nonfluorescent product, and hence an underestimation of cellular activity.

3,097 citations

Book ChapterDOI
TL;DR: The existence of NK cells has prompted a reinterpretation of both the studies of specific cytotoxicity against spontaneous human tumors and the theory of immune surveillance, at least in its most restrictive interpretation.
Abstract: Publisher Summary Studies of cytotoxicity by human lymphocytes revealed not only that both allogeneic and syngeneic tumor cells were lysed in a non-MHC-restricted fashion, but also that lymphocytes from normal donors were often cytotoxic. Lymphocytes from any healthy donor, as well as peripheral blood and spleen lymphocytes from several experimental animals, in the absence of known or deliberate sensitization, were found to be spontaneously cytotoxic in vitro for some normal fresh cells, most cultured cell lines, immature hematopoietic cells, and tumor cells. This type of nonadaptive, non-MHC-restricted cellmediated cytotoxicity was defined as “natural” cytotoxicity, and the effector cells mediating natural cytotoxicity were functionally defined as natural killer (NK) cells. The existence of NK cells has prompted a reinterpretation of both the studies of specific cytotoxicity against spontaneous human tumors and the theory of immune surveillance, at least in its most restrictive interpretation. Unlike cytotoxic T cells, NK cells cannot be demonstrated to have clonally distributed specificity, restriction for MHC products at the target cell surface, or immunological memory. NK cells cannot yet be formally assigned to a single lineage based on the definitive identification of a stem cell, a distinct anatomical location of maturation, or unique genotypic rearrangements.

2,982 citations

Journal ArticleDOI
TL;DR: A phenomenological model is presented, operating on an intraspecific level, which views the cost of secondary sexual development from an endocrinological perspective and proposes a negative-feedback loop between signal intensity and parasite burden by suggesting that testosterone-dependent signal intensity is a plastic response.
Abstract: It has been argued that females should be able to choose parasite-resistant mates on the basis of the quality of male secondary sexual characters and that such signals must be costly handicaps in order to evolve. To a large extent, handicap hypotheses have relied on energetic explanations for these costs. Here, we have presented a phenomenological model, operating on an intraspecific level, which views the cost of secondary sexual development from an endocrinological perspective. The primary androgenic hormone, testosterone, has a dualistic effect; it stimulates development of characteristics used in sexual selection while reducing immu- nocompetence. This "double-edged sword" creates a physiological trade-off that influences and is influenced by parasite burden. We propose a negative-feedback loop between signal intensity and parasite burden by suggesting that testosterone-dependent signal intensity is a plastic re- sponse. This response is modified in accordance with the competing demands of the potential costs of parasite infection versus that of increased reproductive success afforded by exaggerated signals. We clarify how this trade-off is intimately involved in the evolution of secondary sexual characteristics and how it may explain some of the equivocal empirical results that have surfaced in attempts to quantify parasite's effect on sexual selection.

2,595 citations