scispace - formally typeset
Search or ask a question
Author

S. Arathi Rani

Bio: S. Arathi Rani is an academic researcher. The author has contributed to research in topics: Photobiology. The author has an hindex of 1, co-authored 1 publications receiving 328 citations.
Topics: Photobiology

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed.
Abstract: Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.

3,305 citations

Journal ArticleDOI
TL;DR: The relative energetics of the dye excited state versus the titanium dioxide acceptor state is a key determinant of the dynamics of electron injection in DSSC, and that variations in these energetic, and therefore in the kinetics and efficiency of electron injections, impact directly upon device photovoltaic efficiency.
Abstract: In this paper we focus upon the electron injection dynamics in complete nanocrystalline titanium dioxide dye-sensitized solar cells (DSSCs) employing the ruthenium bipyridyl sensitizer dye N719. Electron injection dynamics and quantum yields are studied by time-resolved single photon counting, and the results are correlated with device performance. In typical DSSC devices, electron injection kinetics were found to proceed from the N719 triplet state with a half-time of 200 ± 60 ps and quantum yield of 84 ± 5%. We find that these injection dynamics are independent of presence of iodide/triiodide redox couple and of the pH of the peptization step used in the synthesis of the TiO2 nanoparticles. They are furthermore found to be only weakly dependent upon the application of electrical bias to the device. In contrast, we find these dynamics to be strongly dependent upon the concentration of tert-butylpyridine (tBP) and lithium cations in the electrolyte. This dependence is correlated with shifts of the TiO2 co...

583 citations

Journal ArticleDOI
TL;DR: A review is carried out of how3D printing helps to improve the fabrication of microfluidic devices, the 3D printing technologies currently used for fabrication and the future of 3Dprinting in the field ofmicrofluidics.
Abstract: The term “Lab-on-a-Chip,” is synonymous with describing microfluidic devices with biomedical applications. Even though microfluidics have been developing rapidly over the past decade, the uptake rate in biological research has been slow. This could be due to the tedious process of fabricating a chip and the absence of a “killer application” that would outperform existing traditional methods. In recent years, three dimensional (3D) printing has been drawing much interest from the research community. It has the ability to make complex structures with high resolution. Moreover, the fast building time and ease of learning has simplified the fabrication process of microfluidic devices to a single step. This could possibly aid the field of microfluidics in finding its “killer application” that will lead to its acceptance by researchers, especially in the biomedical field. In this paper, a review is carried out of how 3D printing helps to improve the fabrication of microfluidic devices, the 3D printing technologies currently used for fabrication and the future of 3D printing in the field of microfluidics.

575 citations

Journal ArticleDOI
TL;DR: The underlying mechanisms of nanot toxicity are surveyed and an overview on the nanotoxicity of lanthanide doped nanoparticles and of upconverting nanoparticles is provided.
Abstract: Lanthanide doped nanoparticles (Ln:NPs) hold promise as novel luminescent probes for numerous applications in nanobiophotonics. Despite excellent photostability, narrowband photoluminescence, efficient anti-Stokes emission and long luminescence lifetimes, which are needed to meet the requirements of multiplexed and background free detection at prolonged observation times, concern about their toxicity is still an issue for both in vivo and in vitro applications. Similar to other chemicals or pharmaceuticals, the very same properties that are desirable and potentially useful from a biomedical perspective can also give rise to unexpected and hazardous toxicities. In engineered bionanomaterials, the potentially harmful effects may originate not only from their chemical composition but also from their small size. The latter property enables the nanoparticles to bypass the biological barriers, thus allowing deep tissue penetration and the accumulation of the nanoparticles in a number of organs. In addition, nanoparticles are known to possess high surface chemical reactivity as well as a large surface-to-volume ratio, which may seriously affect their biocompatibility. Herein we survey the underlying mechanisms of nanotoxicity and provide an overview on the nanotoxicity of lanthanides and of upconverting nanoparticles.

490 citations

Journal ArticleDOI
TL;DR: Transition metal dichalcogenides (TMDCs) have attracted significant attention for their great potential in nano energy as mentioned in this paper, where their electronic properties and uniquely high surface areas offer opportunities for various applications such as nano generators, green electronics, electrocatalytic hydrogen generation and energy storage.
Abstract: Transition metal dichalcogenides (TMDCs) have attracted significant attention for their great potential in nano energy. TMDC layered materials represent a diverse and largely untapped source of 2D systems. High-quality TMDC layers with an appropriate size, variable thickness, superior electronic and optical properties can be produced by the exfoliation or vapor phase deposition method. Semiconducting TMDC monolayers have been demonstrated feasible for various energy related applications, where their electronic properties and uniquely high surface areas offer opportunities for various applications such as nano generators, green electronics, electrocatalytic hydrogen generation and energy storage. In this review, we start from the structure, properties and preparation, followed by detailed discussions on the development of TMDC-based nano energy applications.

231 citations