scispace - formally typeset
Search or ask a question
Author

S. Åsbrink

Bio: S. Åsbrink is an academic researcher. The author has contributed to research in topics: Crystal structure & Copper(II) oxide. The author has an hindex of 1, co-authored 1 publications receiving 442 citations.


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of recent synthetic methods along with associated synthesis mechanisms, characterization, fundamental properties, and promising applications of Cupric oxide (CuO) nanostructures is presented in this article.

1,030 citations

Journal ArticleDOI
TL;DR: In this article, the performance of three distinctly different phases, Cu2O, Cu4O3, and CuO, of this binary semiconductor can be prepared by thin-film deposition techniques, which differ in the oxidation state of copper.
Abstract: Copper-oxide compound semiconductors provide a unique possibility to tune the optical and electronic properties from insulating to metallic conduction, from bandgap energies of 2.1 eV to the infrared at 1.40 eV, i.e., right into the middle of the efficiency maximum for solar-cell applications. Three distinctly different phases, Cu2O, Cu4O3, and CuO, of this binary semiconductor can be prepared by thin-film deposition techniques, which differ in the oxidation state of copper. Their material properties as far as they are known by experiment or predicted by theory are reviewed. They are supplemented by new experimental results from thin-film growth and characterization, both will be critically discussed and summarized. With respect to devices the focus is on solar-cell performances based on Cu2O. It is demonstrated by photoelectron spectroscopy (XPS) that the heterojunction system p-Cu2O/n-AlGaN is much more promising for the application as efficient solar cells than that of p-Cu2O/n-ZnO heterojunction devices that have been favored up to now.

566 citations

Journal ArticleDOI
TL;DR: P-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market, and recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.
Abstract: The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

507 citations

Journal ArticleDOI
TL;DR: Copper-based catalysts are active in a wide range reactions of transformation of nitrogen oxides and represent an useful model system to better understand the fundamental aspects of the chemistry and mechanism of reaction of catalytic transformation of these pollutants.
Abstract: Copper-based catalysts are active in a wide range reactions of transformation of nitrogen oxides and represent an useful model system to better understand the fundamental aspects of the chemistry and mechanism of reaction of catalytic transformation of these pollutants. After an introduction on the reactivity of copper-based catalysts (supported and unsupported copper oxide, Cu-zeolites, cuprates and other copper compounds) in various reactions of conversion of nitrogen oxides, four main sub-topics are discussed in detail: (i) nature of copper species, (ii) chemisorption and surface transformations of NO, (iii) relationship between copper species and activity in the conversion of nitrogen oxides and (iv) mechanism of reduction of nitrogen oxides to N 2 . Five reactions of transformation of nitrogen oxides are discussed in detail: (i) decomposition of NO, (ii) reduction of NO with ammonia in the presence or not of oxygen, (iii) reduction of NO with hydrocarbons in the presence of oxygen, (iv) reduction of NO with CO and (v) decomposition of N 2 O. The mechanism of reduction of nitrite and N 2 O by copper enzymes is also discussed, with a view to provide some useful insights on the chemistry of transformation. In this review particular attention is directed towards controversial points in the literature, underestimated questions, and hypothesis and theories which do not allow interpretation of all sets of experimental data. Discussion is also focused on the presence of multiple and competitive pathways of transformation, the relative roles of which depend on reaction conditions.

420 citations

Journal ArticleDOI
TL;DR: It is proposed that copper(II) oxides (containing Cu2+ ions) having large magnetic superexchange interactions can be good candidates for induced-multiferroics with high Curie temperature (T(C), and ferroelectricity is demonstrated with T(C)=230 K in cupric oxide, CuO (tenorite), which is known as a starting material for the synthesis of high-T(c) (critical temperature) superconductors.
Abstract: Induced multiferroics, where ferroelectricity arises through the magnetic order, have attracted significant interest, despite maximum Curie temperatures of only 40 K. The discovery of multiferroic coupling up to 230 K in CuO therefore represents a major advance towards high-TC multiferroics. Materials that combine coupled electric and magnetic dipole order are termed ‘magnetoelectric multiferroics’1,2,3,4. In the past few years, a new class of such materials, ‘induced-multiferroics’, has been discovered5,6, wherein non-collinear spiral magnetic order breaks inversion symmetry, thus inducing ferroelectricity7,8,9. Spiral magnetic order often arises from the existence of competing magnetic interactions that reduce the ordering temperature of a more conventional collinear phase10. Hence, spiral-phase-induced ferroelectricity tends to exist only at temperatures lower than ∼40 K. Here, we propose that copper(II) oxides (containing Cu2+ ions) having large magnetic superexchange interactions11 can be good candidates for induced-multiferroics with high Curie temperature (TC). In fact, we demonstrate ferroelectricity with TC=230 K in cupric oxide, CuO (tenorite), which is known as a starting material for the synthesis of high-Tc (critical temperature) superconductors. Our result provides an important contribution to the search for high-temperature magnetoelectric multiferroics.

417 citations