scispace - formally typeset
Search or ask a question
Author

S. B. Christman

Bio: S. B. Christman is an academic researcher from Alcatel-Lucent. The author has contributed to research in topics: Infrared spectroscopy & Silicon. The author has an hindex of 15, co-authored 21 publications receiving 1521 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Polarized internal reflection spectroscopy has been used to characterize HF-treated Si(111) surfaces as mentioned in this paper, and the silicon-hydrogen stretching vibrations indicate that the surface is well ordered, but is microscopically rough, with coupled monohydride, dihydride and trihydride termination.
Abstract: Polarized internal reflection spectroscopy has been used to characterize HF‐treated Si(111) surfaces. The silicon‐hydrogen stretching vibrations indicate that the surface is well ordered, but is microscopically rough, with coupled monohydride, dihydride, and trihydride termination.

410 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism underlying hydrogen-induced exfoliation of silicon, using a combination of spectroscopic and microscopic techniques, was investigated, and the evolution of the internal defect structure as a function of implanted hydrogen concentration and annealing temperature was studied.
Abstract: We have investigated the fundamental mechanism underlying the hydrogen-induced exfoliation of silicon, using a combination of spectroscopic and microscopic techniques. We have studied the evolution of the internal defect structure as a function of implanted hydrogen concentration and annealing temperature and found that the mechanism consists of a number of essential components in which hydrogen plays a key role. Specifically, we show that the chemical action of hydrogen leads to the formation of (100) and (111) internal surfaces above 400 °C via agglomeration of the initial defect structure. In addition, molecular hydrogen is evolved between 200 and 400 °C and subsequently traps in the microvoids bounded by the internal surfaces, resulting in the build-up of internal pressure. This, in turn, leads to the observed “blistering” of unconstrained silicon samples, or complete layer transfer for silicon wafers joined to a supporting (handle) wafer which acts as a mechanical “stiffener.”

319 citations

Journal ArticleDOI
TL;DR: In this paper, He acts physically as a source of internal pressure but also in an indirect chemical sense, leading to the reconversion of molecular H2 to bound Si-H in VH2-like defects.
Abstract: Infrared spectroscopy and secondary ion mass spectrometry are used to elucidate the mechanism by which co-implantation of He with H facilitates the shearing of crystalline Si. By studying different implant conditions, we can separate the relative contributions of damage, internal pressure generation, and chemical passivation to the enhanced exfoliation process. We find that the He acts physically as a source of internal pressure but also in an indirect chemical sense, leading to the reconversion of molecular H2 to bound Si–H in “VH2-like” defects. We postulate that it is the formation of these hydrogenated defects at the advancing front of the expanding microcavities that enhances the exfoliation process.

183 citations

Journal ArticleDOI
TL;DR: In this paper, a model that describes the kinetics of diffusion across the terraces, as well as the filling of step sites, is proposed to estimate the diffusion barrier and prefactor.
Abstract: The microscopic diffusion of CO on stepped Pt(111) crystal surfaces has been investigated with pulsed molecular beam–time‐resolved surface infrared methods. Following a rapid exposure to CO, we record the time evolution of the CO surface vibrational spectra as the CO diffuse from the initial random distribution to the thermodynamically favored step sites. The data are simulated with a model that describes the kinetics of diffusion across the terraces, as well as the filling of step sites. We critically evaluate this model and the general experimental approach by extending our previous measurements of CO diffusion on Pt(28(111)–(110)) to a surface with higher step density, Pt(l2(111)–(110)), with varying coverages. The model describes both sets of data with the same parameters, confirming the original determination of the diffusion barrier (ΔET) and prefactor (AT) for microscopic surface hopping of CO/Pt(111). This further provides a quantitative means to estimate systematic errors. We report ΔET=4.0±0.7...

113 citations

Journal ArticleDOI
TL;DR: In this article, the authors used multiple internal transmission infrared absorption spectroscopy to probe the interface between the wafers upon initial joining and also during subsequent annealing steps, and observed a pronounced shift in the Si-H stretching frequency due to the physical interaction (van der Waals attraction) that occurs when the surfaces come into intimate contact.
Abstract: Silicon wafer bonding is achieved by joining two particle‐free silicon wafers and annealing to elevated temperatures (∼1100 °C). We have used multiple internal transmission infrared absorption spectroscopy to probe the interface between the wafers upon initial joining and also during subsequent annealing steps. For atomically flat hydrophobic wafers (H passivated), we observe a pronounced shift in the Si–H stretching frequency due to the physical interaction (van der Waals attraction) that occurs when the surfaces come into intimate contact. The hydrogen eventually disappears at high temperatures (1000 °C) and Si–Si bonds are formed between the two surfaces. For hydrophilic wafers (oxide passivated), we initially observe three to five monolayers of water at the interface (providing the initial attraction through H bonding), as well as the presence of hydroxyl groups that terminate the oxide at low temperature. Upon moderate heating (<400 °C), the water trapped at the interface dissociates and leads to the formation of additional oxide. Between 400 and 800 °C, the hydroxyl groups disappear, resulting in a corresponding increase in oxide and the formation of Si–O–Si bridging linkages across the two surfaces.

97 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the fundamental interactions of water with solid surfaces can be found in this paper, where the authors assimilated the results of the TM review with those covered by the authors to provide a current picture of water interactions on solid surfaces, such as how water adsorbs, what are the chemical and electrostatic forces that constitute the adsorbed layer, how is water thermally or non-thermally activated and how do coadsorbates influence these properties of water.

2,022 citations

Journal ArticleDOI
TL;DR: In this article, the effect of varying the solution pH on the surface structure was studied by measuring the SiH stretch vibrations with infrared absorption spectroscopy, and the surface was found to be very homogeneous with low defect density (<0.5%) and narrow vibrational linewidth.
Abstract: Aqueous HF etching of silicon surfaces results in the removal of the surface oxide and leaves behind silicon surfaces terminated by atomic hydrogen. The effect of varying the solution pH on the surface structure is studied by measuring the SiH stretch vibrations with infrared absorption spectroscopy. Basic solutions ( pH=9–10) produce ideally terminated Si(111) surfaces with silicon monohydride ( 3/4 SiH) oriented normal to the surface. The surface is found to be very homogeneous with low defect density (<0.5%) and narrow vibrational linewidth (0.95 cm−1 ).

1,250 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss methods of forming silicon-on-insulator (SOI) wafers, their physical properties, and the latest improvements in controlling the structure parameters.
Abstract: Silicon-on-insulator (SOI) wafers are precisely engineered multilayer semiconductor/dielectric structures that provide new functionality for advanced Si devices. After more than three decades of materials research and device studies, SOI wafers have entered into the mainstream of semiconductor electronics. SOI technology offers significant advantages in design, fabrication, and performance of many semiconductor circuits. It also improves prospects for extending Si devices into the nanometer region (<10 nm channel length). In this article, we discuss methods of forming SOI wafers, their physical properties, and the latest improvements in controlling the structure parameters. We also describe devices that take advantage of SOI, and consider their electrical characteristics.

772 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized recent progress and current scientific understanding of ultrathin (<4 nm) SiO2 and Si-O-N (silicon oxynitride) gate dielectrics on Si-based devices.
Abstract: The outstanding properties of SiO2, which include high resistivity, excellent dielectric strength, a large band gap, a high melting point, and a native, low defect density interface with Si, are in large part responsible for enabling the microelectronics revolution. The Si/SiO2 interface, which forms the heart of the modern metal–oxide–semiconductor field effect transistor, the building block of the integrated circuit, is arguably the worlds most economically and technologically important materials interface. This article summarizes recent progress and current scientific understanding of ultrathin (<4 nm) SiO2 and Si–O–N (silicon oxynitride) gate dielectrics on Si based devices. We will emphasize an understanding of the limits of these gate dielectrics, i.e., how their continuously shrinking thickness, dictated by integrated circuit device scaling, results in physical and electrical property changes that impose limits on their usefulness. We observe, in conclusion, that although Si microelectronic devices...

747 citations

Journal ArticleDOI
TL;DR: In this paper, the chemical modification of hydrogen-passivated n-Si surfaces by a scanning tunneling microscope (STM) operating in air is reported, and the modified surface regions have been characterized by STM spectroscopy, scanning electron microscopy (SEM), time-of-flight secondary ion mass spectrometry (TOF SIMS), and chemical etch/Nomarski microscopy.
Abstract: The chemical modification of hydrogen‐passivated n‐Si (111) surfaces by a scanning tunneling microscope (STM) operating in air is reported. The modified surface regions have been characterized by STM spectroscopy, scanning electron microscopy (SEM), time‐of‐flight secondary‐ion mass spectrometry (TOF SIMS), and chemical etch/Nomarski microscopy. Comparison of STM images with SEM, TOF SIMS, and optical information indicates that the STM contrast mechanism of these features arises entirely from electronic structure effects rather than from topographical differences between the modified and unmodified substrate. No surface modification was observed in a nitrogen ambient. Direct writing of features with 100 nm resolution was demonstrated. The permanence of these features was verified by SEM imaging after three months storage in air. The results suggest that field‐enhanced oxidation/diffusion occurs at the tip‐substrate interface in the presence of oxygen.

723 citations