scispace - formally typeset
Search or ask a question
Author

S. B. Henderson

Bio: S. B. Henderson is an academic researcher from Utah State University. The author has contributed to research in topics: Ionosphere & Thermosphere. The author has an hindex of 4, co-authored 4 publications receiving 717 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Immel et al. as discussed by the authors showed that ionospheric densities vary with the strength of nonmigrating, diurnal atmospheric tides that are, in turn, driven mainly by weather in the tropics.
Abstract: [1] A newly discovered 1000-km scale longitudinal variation in ionospheric densities is an unexpected and heretofore unexplained phenomenon. Here we show that ionospheric densities vary with the strength of nonmigrating, diurnal atmospheric tides that are, in turn, driven mainly by weather in the tropics. A strong connection between tropospheric and ionospheric conditions is unexpected, as these upward propagating tides are damped far below the peak in ionospheric density. The observations can be explained by consideration of the dynamo interaction of the tides with the lower ionosphere (E-layer) in daytime. The influence of persistent tropical rainstorms is therefore an important new consideration for space weather. Citation: Immel, T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton (2006), Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, doi:10.1029/2006GL026161. [2] The ionosphere is the region of highest plasma density in Earth’s space environment. It is a dynamic environment supporting a host of plasma instability processes, with important implications for global communications and geo-location applications. Produced by the ionization of the neutral atmosphere by solar x-ray and UV radiation, the uppermost ionospheric layer has the highest plasma density with a peak around 350–400 km altitude and primarily consists of O + ions. This is called the F-layer and it is considered to be a collisionless environment such that the charged particles interact only weakly with the neutral atmosphere, lingering long after sunset. The E-layer is composed of molecular ions and is located between 100–150 km where collisions between ions and neutrals are much more frequent, with the result that the layer recombines and is reduced in density a hundredfold soon after sunset [Rees ,1 989;Heelis, 2004]. The respective altitude regimes of these two layers are commonly called the E- and F-regions. [3] The ionosphere glows as O + ions recombine to an excited state of atomic oxygen (O I) at a rate proportional to

597 citations

Journal ArticleDOI
TL;DR: In this paper, a longitudinal wave number four pattern in the magnetic latitude and concentration of the F region peak ion density when measured at a fixed local time was found to be persistent over many days around equinox during magnetically quiet conditions close to solar maximum but can be dominated by other processes such as cross-equator winds during other periods.
Abstract: longitudinal wave number four pattern in the magnetic latitude and concentration of the F region peak ion density when measured at a fixed local time. In a new comparison of two data sets with observations made by the OGO 4 satellite, this pattern is seen to be persistent over many days around equinox during magnetically quiet conditions close to solar maximum but can be dominated by other processes such as cross-equator winds during other periods. It is found that the longitudinal variability is created by a processes occurring in the dayside ionosphere. A longitudinal modulation of the dayside equatorial fountainisthemostlikelydrivingmechanism.ThroughcomparisonwithGWSM-02model,it isshownthatthepredictedmodulationofthedaysidethermosphericwindsandtemperaturesat E region altitudes created by non-migrating diurnal tides can explain the modulation in the dayside equatorial fountain. This result highlights the importance of understanding the temporal variability of tropospheric weather systems on our understanding and possible predictability of the development of the F region ionosphere. It may also provide a possible further means of testing our understanding of atmospheric tides on a global scale.

118 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an analysis of global quiet time morphology of the equatorial anomaly (EA) as measured by images of nighttime ionospheric 135.6 nm radiation taken by the Global Ultraviolet Imager (GUVI) on NASA's TIMED spacecraft.
Abstract: [1] The equatorial anomaly (EA) is host to the highest ionospheric densities on Earth. Disturbances within the EA result in plasma density depletions and large density gradients. This paper presents observations of global quiet time morphology of the EA as measured by images of nighttime ionospheric 135.6 nm radiation taken by the Global Ultraviolet Imager (GUVI) on NASA's Thermosphere, Ionosphere, and Mesosphere, Energetics and Dynamics (TIMED) spacecraft. It also presents equatorial plasma bubble (EPB) morphology as determined by detection of intensity depletions in GUVI images. The technique used for analysis is unique in that it allows for simultaneous characterization of the EA and detection of EPBs. This paper also presents extensive observations of EA and EPB morphology and shows that EA morphology can be well characterized by data taken from the 2030–2130 MLT range. Further, this paper identifies crest symmetry in intensity and latitude as an indicator of both EA and EPB morphology. For all longitudes, the crest-to-trough ratio (CTR) is shown to be well correlated with the EPB rate. While the CTR may drop with solar flux, EPB levels do not. Thus the absolute CTR is less an indicator than the change in the CTR as a function of longitude for a given season and solar flux. One significant exception to this correlation is observed in the Pacific sector during the June solstice. In this case the EPB rate is high despite a low CTR.

86 citations

Journal ArticleDOI
TL;DR: In this article, the singular value decomposition (SVDC) was used to estimate an along-track intensity profile as TIMED passes over the equatorial anomaly (EA) using nighttime 135.6 nm radiance observed by the Global Ultraviolet Imager (GUVI) on board the TIMED spacecraft.
Abstract: [1] We present a method for measuring equatorial anomaly (EA) morphology using nighttime 135.6 nm radiance observed by the Global Ultraviolet Imager (GUVI) on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) spacecraft. The method uses the singular value decomposition to estimate an along-track intensity profile as TIMED passes over the EA. The method is unique in that it removes intensity depletions due to equatorial plasma bubbles (EPBs) from the estimated intensity profile. Thus the profiles reflect plasma distribution in response to equatorial E × B drifts and neutral winds. A set of metrics including crest maximum intensity and its latitude are extracted from the intensity profiles. EPBs are also detected. Preliminary results from this method using GUVI equinox data from 2002 are compared with results from a ground-based ionosonde EA morphology study by Whalen (2001) in the western American sector. EPB occurrence rates are also compared with results from Huang et al. (2001), who used DMSP in situ density measurements to detect EPBs. General agreement was found in both studies with some localized differences. These results indicate that this method provides a valuable means of simultaneously studying EA morphology and EPB occurrence rates. Since the TIMED spacecraft precesses through all local times in 60 days, this method can be used to extend ground-based measurements to study the global relationship between E × B drifts and plasma distribution in the EA and how these relate to the occurrence of large-scale EPBs.

24 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Immel et al. as discussed by the authors showed that ionospheric densities vary with the strength of nonmigrating, diurnal atmospheric tides that are, in turn, driven mainly by weather in the tropics.
Abstract: [1] A newly discovered 1000-km scale longitudinal variation in ionospheric densities is an unexpected and heretofore unexplained phenomenon. Here we show that ionospheric densities vary with the strength of nonmigrating, diurnal atmospheric tides that are, in turn, driven mainly by weather in the tropics. A strong connection between tropospheric and ionospheric conditions is unexpected, as these upward propagating tides are damped far below the peak in ionospheric density. The observations can be explained by consideration of the dynamo interaction of the tides with the lower ionosphere (E-layer) in daytime. The influence of persistent tropical rainstorms is therefore an important new consideration for space weather. Citation: Immel, T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton (2006), Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, doi:10.1029/2006GL026161. [2] The ionosphere is the region of highest plasma density in Earth’s space environment. It is a dynamic environment supporting a host of plasma instability processes, with important implications for global communications and geo-location applications. Produced by the ionization of the neutral atmosphere by solar x-ray and UV radiation, the uppermost ionospheric layer has the highest plasma density with a peak around 350–400 km altitude and primarily consists of O + ions. This is called the F-layer and it is considered to be a collisionless environment such that the charged particles interact only weakly with the neutral atmosphere, lingering long after sunset. The E-layer is composed of molecular ions and is located between 100–150 km where collisions between ions and neutrals are much more frequent, with the result that the layer recombines and is reduced in density a hundredfold soon after sunset [Rees ,1 989;Heelis, 2004]. The respective altitude regimes of these two layers are commonly called the E- and F-regions. [3] The ionosphere glows as O + ions recombine to an excited state of atomic oxygen (O I) at a rate proportional to

597 citations

Journal ArticleDOI
TL;DR: A brief history of the IRI project is given, the latest version of the model, IRI-2012, is described and efforts to develop a real-time IRI model are discussed.
Abstract: The International Reference Ionosphere (IRI) project was established jointly by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) in the late sixties with the goal to develop an international standard for the specification of plasma parameters in the Earth’s ionosphere. COSPAR needed such a specification for the evaluation of environmental effects on spacecraft and experiments in space, and URSI for radiowave propagation studies and applications. At the request of COSPAR and URSI, IRI was developed as a data-based model to avoid the uncertainty of theory-based models which are only as good as the evolving theoretical understanding. Being based on most of the available and reliable observations of the ionospheric plasma from the ground and from space, IRI describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 km to 2000 km. A working group of about 50 international ionospheric experts is in charge of developing and improving the IRI model. Over time as new data became available and new modeling techniques emerged, steadily improved editions of the IRI model have been published. This paper gives a brief history of the IRI project and describes the latest version of the model, IRI-2012. It also briefly discusses efforts to develop a real-time IRI model. The IRI homepage is at http://IRImodel.org.

572 citations

Journal ArticleDOI
TL;DR: The International Reference Ionosphere (IRI) is a standard for the specification of plasma parameters in Earth's ionosphere as mentioned in this paper, which is used by the International Union of Radio Science (URSI).
Abstract: The international reference ionosphere (IRI) is the internationally recognized and recommended standard for the specification of plasma parameters in Earth’s ionosphere. It describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 to 1,500 km. A joint working group of the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) is in charge of developing and improving the IRI model. As requested by COSPAR and URSI, IRI is an empirical model being based on most of the available and reliable data sources for the ionospheric plasma. The paper describes the latest version of the model and reviews efforts towards future improvements, including the development of new global models for the F2 peak density and height, and a new approach to describe the electron density in the topside and plasmasphere. Our emphasis will be on the electron density because it is the IRI parameter most relevant to geodetic techniques and studies. Annual IRI meetings are the main venue for the discussion of IRI activities, future improvements, and additions to the model. A new special IRI task force activity is focusing on the development of a real-time IRI (RT-IRI) by combining data assimilation techniques with the IRI model. A first RT-IRI task force meeting was held in 2009 in Colorado Springs. We will review the outcome of this meeting and the plans for the future. The IRI homepage is at http://www.IRI.gsfc.nasa.gov.

359 citations

Journal ArticleDOI
TL;DR: In this article, the seasonal and interannual variability of migrating and nonmigrating solar atmospheric tides at altitudes between 100 and 116 km were investigated using temperature measurements made with the SABER instrument on the TIMED spacecraft during 2002-2006.
Abstract: [1] The seasonal and interannual variability of migrating (Sun-synchronous) and nonmigrating solar atmospheric tides at altitudes between 100 and 116 km are investigated using temperature measurements made with the SABER instrument on the TIMED spacecraft during 2002–2006. Quasi-biennial variations of order ±10–15% in migrating diurnal and semidiurnal tidal amplitudes are found, presumably due to modulation by the quasi-biennial oscillation (QBO) as the tides propagate from their troposphere and stratospheric sources to the lower thermosphere. A number of nonmigrating tidal components are found that have the potential to produce significant longitudinal variability of the total tidal fields. The most prominent of these, i.e., those that appear at amplitudes of order 5–10 K in a 5-year mean climatology, include the zonally symmetric (s = 0) diurnal tide (D0); the eastward propagating diurnal and semidiurnal tides with zonal wave numbers s = −2 (DE2 and SE2) and s = −3 (DE3 and SE3); and the following westward propagating waves: diurnal s = 2 (DW2); semidiurnal s = 1 (SW1), s = 3 (SW3), and s = 4 (SW4); and terdiurnal s = 5 (TW5). These waves can be plausibly accounted for by nonlinear interaction between migrating tidal components and stationary planetary waves with s = 1 or s = 2 or by longitudinal variations of tropospheric thermal forcing. Additional waves that occur during some years or undergo phase cancellation within construction of a 5-year climatology include DW5, SE1, SE4, SW6, TE1, TW1, and TW7. It is anticipated that the winds that accompany all of these waves in the 100–170 km region will impose longitudinal variability in the electric fields produced through the ionospheric dynamo mechanism, thereby modulating vertical motion of the equatorial ionosphere and the concomitant plasma densities. In addition to the wave-4 modulation of the equatorial ionosphere that has recently been discovered and replicated in modeling studies, the waves revealed here will generate wave-1 (SW1, SW3, D0, DW2), wave-2 (SW4, TW1), wave-3 (DE2, SE1), wave-4 (DE3, SE2, DW5, SW6, TE1, TW7), wave-5 (SE3), and wave-6 (SE4) components of this ionospheric variability, depending on year and time of year. However, the absolute and relative efficiencies with which these waves produce electric fields remains to be determined.

317 citations

Journal ArticleDOI
TL;DR: In this article, the authors used five years of measurements on board the ROCSAT-1 satellite to develop a detailed quiet time global empirical model for equatorial F region vertical plasma drifts, which describes the local time, seasonal and longitudinal dependence of the vertical drifts for an altitude of 600 km under moderate and high solar flux conditions.
Abstract: [1] We have used five years of measurements on board the ROCSAT-1 satellite to develop a detailed quiet time global empirical model for equatorial F region vertical plasma drifts. This model describes the local time, seasonal and longitudinal dependence of the vertical drifts for an altitude of 600 km under moderate and high solar flux conditions. The model results are in excellent agreement with measurements from the Jicamarca radar and also from other ground-based and in situ probes. We show that the longitudinal dependence of the daytime and nighttime vertical drifts is much stronger than reported earlier, especially during December and June solstice. The late night downward drift velocities are larger in the eastern than in the western hemisphere at all seasons, the morning and afternoon December solstice drifts have significantly different longitudinal dependence, and the daytime upward drifts have strong wave number-four signatures during equinox and June solstice. The largest evening upward drifts occur during equinox and December solstice near the American sector. The longitudinal variations of the evening prereversal velocity peaks during December and June solstice are anti-correlated, which further indicates the importance of conductivity effects on the electrodynamics of the equatorial ionosphere.

313 citations