scispace - formally typeset
Search or ask a question
Author

S. Blanco-Cuaresma

Bio: S. Blanco-Cuaresma is an academic researcher from University of Geneva. The author has contributed to research in topics: Stars & Open cluster. The author has an hindex of 20, co-authored 28 publications receiving 7527 citations. Previous affiliations of S. Blanco-Cuaresma include University of Bordeaux & Harvard University.

Papers
More filters
Journal ArticleDOI
TL;DR: Gaia as discussed by the authors is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach.
Abstract: Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page.

5,164 citations

Journal ArticleDOI
TL;DR: The first Gaia data release, Gaia DR1 as discussed by the authors, consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues.
Abstract: Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr-1 for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr-1. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to0.03 mag over the magnitude range 5 to 20.7. Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data.

2,174 citations

Journal ArticleDOI
Rodolfo Smiljanic, Andreas Korn, Maria Bergemann, Antonio Frasca, Laura Magrini, Thomas Masseron, Elena Pancino, Gregory R. Ruchti, I. San Roman, Luca Sbordone, S. G. Sousa, Hugo M. Tabernero, Grazina Tautvaisiene, Marica Valentini, Marc Weber, Clare Worley, V. Zh. Adibekyan, C. Allende Prieto, G. Barisevičius, K. Biazzo, S. Blanco-Cuaresma, Piercarlo Bonifacio, Angela Bragaglia, Elisabetta Caffau, Tristan Cantat-Gaudin, Y. Chorniy, P. de Laverny, E. Delgado-Mena, P. Donati, S. Duffau, E. Franciosini, Eileen D. Friel, Douglas Geisler, J. I. González Hernández, P. Gruyters, Guillaume Guiglion, Camilla Juul Hansen, Ulrike Heiter, Vanessa Hill, Heather R. Jacobson, Paula Jofre, Henrik Jönsson, A. C. Lanzafame, Carmela Lardo, Hans-Günter Ludwig, Enrico Maiorca, Šarūnas Mikolaitis, D. Montes, Thierry Morel, Alessio Mucciarelli, C. Muñoz, Thomas Nordlander, L. Pasquini, E. Puzeras, Alejandra Recio-Blanco, Nils Ryde, G. G. Sacco, Nuno C. Santos, Aldo Serenelli, R. Sordo, Caroline Soubiran, Lorenzo Spina, Matthias Steffen, Antonella Vallenari, S. Van Eck, S. Villanova, Gerard Gilmore, Sofia Randich, Martin Asplund, James Binney, Janet E. Drew, Sofia Feltzing, Annette M. N. Ferguson, R. D. Jeffries, Giuseppina Micela, Ignacio Negueruela, T. Prusti, H. W. Rix, Emilio J. Alfaro, C. Babusiaux, Thomas Bensby, R. Blomme, Ettore Flaccomio, P. Francois, Michael G. Irwin, Sergey E. Koposov, N. A. Walton, Amelia Bayo, Giovanni Carraro, M. T. Costado, Francesco Damiani, Bengt Edvardsson, A. Hourihane, R. J. Jackson, Jack Lewis, Karin Lind, Gianni Marconi, Ch. Martayan, Lorenzo Monaco, L. Morbidelli, L. Prisinzano, Simone Zaggia 
TL;DR: In this paper, the Gaia-ESO Survey is obtaining high-quality spectroscopic data for about 10^5 stars using FLAMES at the VLT, which are analyzed in parallel by several state-of-the-art methodologies.
Abstract: The Gaia-ESO Survey is obtaining high-quality spectroscopic data for about 10^5 stars using FLAMES at the VLT. UVES high-resolution spectra are being collected for about 5000 FGK-type stars. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO 2nd internal release and will be part of its 1st public release of advanced data products. The final parameter scale is tied to the one defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. A set of open and globular clusters is used to evaluate the physical soundness of the results. Each methodology is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted-medians of those from the individual methods. The recommended results successfully reproduce the benchmark stars atmospheric parameters and the expected Teff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55 K for Teff, 0.13 dex for log g, and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for Teff, 0.10-0.25 dex for log g, and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex.

229 citations

Journal ArticleDOI
Rodolfo Smiljanic1, Andreas Korn2, Maria Bergemann3, Antonio Frasca4, Laura Magrini4, Thomas Masseron5, Elena Pancino6, Gregory R. Ruchti7, I. San Roman8, Luca Sbordone9, Luca Sbordone10, Luca Sbordone11, S. G. Sousa12, Hugo M. Tabernero13, Gražina Tautvaišienė14, Marica Valentini15, Michael Weber15, Clare Worley16, V. Zh. Adibekyan12, C. Allende Prieto17, C. Allende Prieto18, G. Barisevičius14, K. Biazzo4, S. Blanco-Cuaresma19, Piercarlo Bonifacio20, Angela Bragaglia4, Elisabetta Caffau20, Elisabetta Caffau10, Tristan Cantat-Gaudin21, Y. Chorniy14, P. de Laverny19, E. Delgado-Mena12, P. Donati22, S. Duffau9, S. Duffau10, S. Duffau11, E. Franciosini4, Eileen D. Friel23, Douglas Geisler8, J. I. González Hernández18, Pieter Gruyters2, Guillaume Guiglion19, Camilla Juul Hansen10, Ulrike Heiter2, Vanessa Hill19, Heather R. Jacobson24, Paula Jofre16, Henrik Jönsson7, A. C. Lanzafame25, Carmela Lardo4, Hans-Günter Ludwig10, Enrico Maiorca4, S. Mikolaitis14, S. Mikolaitis19, D. Montes13, Thierry Morel26, Alessio Mucciarelli22, C. Muñoz8, Thomas Nordlander2, L. Pasquini1, E. Puzeras14, Alejandra Recio-Blanco19, Nils Ryde7, G. G. Sacco4, Nuno C. Santos12, Aldo Serenelli18, R. Sordo4, Caroline Soubiran19, Lorenzo Spina4, Lorenzo Spina27, Matthias Steffen15, Antonella Vallenari4, S. Van Eck5, S. Villanova8, Gerard Gilmore16, Sofia Randich4, Martin Asplund28, James Binney, Janet E. Drew29, Sofia Feltzing7, Annette M. N. Ferguson30, R. D. Jeffries31, Giuseppina Micela4, Ignacio Negueruela32, T. Prusti33, H. W. Rix3, Emilio J. Alfaro18, C. Babusiaux20, Thomas Bensby7, R. Blomme34, Ettore Flaccomio4, P. Francois20, Mike Irwin16, Sergey E. Koposov16, N. A. Walton16, Amelia Bayo35, Amelia Bayo3, Giovanni Carraro1, M. T. Costado18, Francesco Damiani24, Bengt Edvardsson2, A. Hourihane16, R. J. Jackson31, Jack Lewis16, Karin Lind16, Gianni Marconi1, Christophe Martayan1, Lorenzo Monaco1, L. Morbidelli4, L. Prisinzano4, Simone Zaggia4 
TL;DR: In this article, the Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 10(5) stars and high-resolution UVES spectra of about 5000 stars.
Abstract: Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 10(5) stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars. Aims. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods. The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods. Results. The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected T-eff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55K for T-eff, 0.13dex for log g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for T-eff, 0.10-0.25 dex for log g and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions. The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution.

222 citations

Journal ArticleDOI
F. van Leeuwen1, Antonella Vallenari2, C. Jordi3, Lennart Lindegren3  +589 moreInstitutions (96)
TL;DR: The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS) component by means of the astrometric data for open clusters as discussed by the authors, which is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho 2 positions in 1991.
Abstract: Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information. Aims. We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters. Methods. Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed. Results. Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier Hipparcos-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters. Conclusions. The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the Hipparcos data, with clearly increased luminosities for older A and F dwarfs.

152 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations

Journal ArticleDOI
TL;DR: Gaia as discussed by the authors is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach.
Abstract: Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page.

5,164 citations

Journal ArticleDOI
TL;DR: The first Gaia data release, Gaia DR1 as mentioned in this paper, consists of the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues.
Abstract: At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. We summarize Gaia DR1 and provide illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Gaia DR1 consists of: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set,consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ~3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas/yr for the proper motions. A systematic component of ~0.3 mas should be added to the parallax uncertainties. For the subset of ~94000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas/yr. For the secondary astrometric data set, the typical uncertainty of the positions is ~10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ~0.03 mag over the magnitude range 5 to 20.7. Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data.

2,256 citations

Journal ArticleDOI
TL;DR: The first Gaia data release, Gaia DR1 as discussed by the authors, consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues.
Abstract: Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr-1 for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr-1. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to0.03 mag over the magnitude range 5 to 20.7. Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data.

2,174 citations

Journal ArticleDOI
Lennart Lindegren1, Jose M Hernandez2, Alex Bombrun, Sergei A. Klioner3, Ulrich Bastian4, M. Ramos-Lerate, A. de Torres, H. Steidelmüller3, C.A. Stephenson5, David Hobbs1, U. Lammers2, M. Biermann4, R. Geyer3, Thomas Hilger3, Daniel Michalik1, U. Stampa4, Paul J. McMillan1, J. Castañeda6, M. Clotet6, G. Comoretto5, Michael Davidson7, C. Fabricius6, G. Gracia, Nigel Hambly7, A. Hutton, A. Mora, Jordi Portell6, F. van Leeuwen8, U. Abbas, A. Abreu, Martin Altmann9, Martin Altmann4, Alexandre Humberto Andrei, E. Anglada10, L. Balaguer-Núñez6, C. Barache9, Ugo Becciani11, Stefano Bertone9, Stefano Bertone12, Luciana Bianchi, S. Bouquillon9, Geraldine Bourda13, T. Brüsemeister4, Beatrice Bucciarelli, D. Busonero, R. Buzzi, Rossella Cancelliere14, T. Carlucci9, Patrick Charlot13, N. Cheek10, Mariateresa Crosta, C. Crowley, J. H. J. de Bruijne15, F. de Felice16, R. Drimmel, P. Esquej, Agnes Fienga17, E. Fraile, Mario Gai, N. Garralda6, J.J. González-Vidal6, Raphael Guerra2, M. Hauser18, M. Hauser4, Werner Hofmann4, B. Holl19, Stefan Jordan4, Mario G. Lattanzi, H. Lenhardt4, S. Liao20, E. Licata, Tim Lister21, W. Löffler4, Jon Marchant22, J. M. Martín-Fleitas, R. Messineo23, Francois Mignard17, Roberto Morbidelli, E. Poggio14, Alberto Riva, Nicholas Rowell7, E. Salguero, M. Sarasso, Eva Sciacca11, H. I. Siddiqui5, Richard L. Smart, Alessandro Spagna, Iain A. Steele22, F. Taris9, J. Torra6, A. van Elteren24, W. van Reeven, Alberto Vecchiato 
TL;DR: In this article, the authors describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these results performed within the ASTR task.
Abstract: Context. Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase.Aims. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these resultsperformed within the astrometry task.Methods. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. These data were calculated in two steps. First, the satellite attitude and the astrometric calibration parameters of the CCDs were obtained in an astrometric global iterative solution for 16 million selected sources, using about 1% of the input data. This primary solution was tied to the extragalactic International Celestial Reference System (ICRS) by means of quasars. The resulting attitude and calibration were then used to calculate the astrometric parameters of all the sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion.Results. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G = 17 mag, and 0.7 masat G = 20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas yr−1 , respectively.The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas yr−1 . From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas yr−1 in proper motion are seen on small ( DR2 astrometry are given in the appendices.

1,836 citations