scispace - formally typeset
Search or ask a question
Author

S.C. Jain

Bio: S.C. Jain is an academic researcher from Solid State Physics Laboratory. The author has contributed to research in topics: Diode & Low level injection. The author has an hindex of 8, co-authored 20 publications receiving 1398 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the splitting of the valence band by crystal field and spin-orbit interaction has been calculated and measured, and the measured values agree with the calculated values and the effects of strain on the splitting and optical properties have been studied in detail.
Abstract: During the last few years the developments in the field of III–nitrides have been spectacular. High quality epitaxial layers can now be grown by MOVPE. Recently good quality epilayers have also been grown by MBE. Considerable work has been done on dislocations, strain, and critical thickness of GaN grown on different substrates. Splitting of valence band by crystal field and by spin-orbit interaction has been calculated and measured. The measured values agree with the calculated values. Effects of strain on the splitting of the valence band and on the optical properties have been studied in detail. Values of band offsets at the heterointerface between several pairs of different nitrides have been determined. Extensive work has been done on the optical and electrical properties. Near band-edge spectra have been measured over a wide range of temperatures. Free and bound exciton peaks have been resolved. Valence band structure has been determined using the PL spectra and compared with the theoretically calcu...

1,202 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss recent advances made in the theory and measurements of stresses and strains in Si-based heterostructures containing submicron and micron-size features.
Abstract: We discuss recent advances made in the theory and measurements of stresses and strains in Si‐based heterostructures containing submicron‐ and micron‐size features Several reports on theoretical as well as experimental studies of stresses in the substrates with local oxidation of silicon structures on the surface have been published recently With the advent of GeXSi1−X strained layers and stripes extensive studies of both the stripe and the substrate stresses have also been made Unlike the previous calculations and analytical models, recent finite element (FE) calculations take into account the coupling between the film–substrate stresses without making the approximation that the interface is rigid or that there is no variation of stresses in the stripes in a direction perpendicular to the interface The results of these calculations have been compared with the analytical models and limitations of the analytical models have been pointed out Micro‐Raman measurements of the stresses in the stripes, quant

117 citations

Journal ArticleDOI
TL;DR: In this article, a method is described to calculate the Raman spectrum from a nonuniformly strained sample taking into account the effects that arise due to finite depth of penetration and diameter of the laser beam.
Abstract: A method is described to calculate the Raman spectrum from a nonuniformly strained sample taking into account the effects that arise due to finite depth of penetration and diameter of the laser beam. Both the parallel and the focused beams are considered. The case of stress in a Si substrate decaying monotonically with depth z (rapidly near the interface and slowly at larger depths) is considered in detail. The predicted Raman shifts are found to be sensitive to both the distribution of stress and to the absorption coefficient α for the laser light wavelength used. It is found that light scattered from distances much larger than 1/α still contribute significantly to the observed Raman spectrum. The observed shift in the peak of the spectrum does not correspond to the stress close to the interface. If the stress decays more rapidly than the light intensity, the Raman line that originates from the unstrained lower part of the substrate dominates. For transparent material (α=0) and unfocused beam the Raman spectrum consists of only the unstrained Si line; the contribution to Raman line from the strained interface region is completely masked. For measurements of stresses near the interface short wavelength light with an absorption depth of 5–10 nm is recommended. The calculated and observed Raman shifts in a local oxidation of silicon (a processing technique for isolation) with polysilicon buffer between the nitride stripe and the Si substrate are compared. The agreement between the calculated and the observed Raman shifts is very good. The salient points of our approach which enabled us to obtain this agreement are: We took into account the effects of laser beam width, penetration depth, and focusing; we included the stresses in the polysilicon layer and near the polysilicon/silicon interface, and we included contributions from large depths.

34 citations

Journal ArticleDOI
TL;DR: In this article, the edge-induced relaxation of film stress in a semi-infinite thin film, and the corresponding stresses induced in the substrate, is extended to apply to stripes of finite width 2l and thickness h.

28 citations

Journal ArticleDOI
TL;DR: In this paper, the combined effect of the misfit strain and the strain caused by a neighboring defect on the activation energy of nucleation of dislocation loops is calculated, where defects of different sizes and shapes and located at different distances from the loop are considered.
Abstract: The combined effect of the misfit strain and the strain caused by a neighboring defect on the activation energy of nucleation of dislocation loops is calculated. Defects of different sizes and shapes and located at different distances from the loop are considered. At very low mismatches (<0.5%) and with very small defects, the activation energy is not sufficiently reduced and large layer thicknesses are required for nucleation. At mismatches of 1% or more, and with defect sizes of 1.5 nm or larger, heterogeneous nucleation at growth temperatures becomes possible. These defects are more efficient in reducing the energy when they are at the center of the loop. Though impurities located within the core of the dislocations can reduce the core parameter substantially and therefore reduce the activation energy, in practice this is unlikely to occur. Very large defects such as SiO2 and SiC precipitates reduce the activation energy of nucleation over large distances thereby inducing the nucleation of several loops which results in very rapid relaxation of strain. In highly mismatched layers (4%–8%) homogeneous nucleation occurs at about 400–500 °C. Why the periodic arrangement of misfit dislocations is observed only in the highly mismatched layers is explained.

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III-V semiconductors that have been investigated to date is presented.
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an...

2,525 citations

Journal ArticleDOI
TL;DR: In this paper, the structural and point defects caused by lattice and stacking mismatch with substrates are discussed. But even the best of the three binaries, InN, AIN and AIN as well as their ternary compounds, contain many structural defects, and these defects notably affect the electrical and optical properties of the host material.
Abstract: Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The p...

1,724 citations

PatentDOI
06 Apr 2012-Science
TL;DR: In this article, the authors present stretchable and printable semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed, or otherwise deformed.
Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

1,673 citations