scispace - formally typeset
Search or ask a question
Author

S. Cobb

Bio: S. Cobb is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Binocular vision & Velocity gradient. The author has an hindex of 6, co-authored 7 publications receiving 1128 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: These findings provide the first evidence of massive somatosensory plasticity in human adults and suggest a mechanism for post-amputation perceptual changes.
Abstract: After upper limb deafferentation, adult macaques exhibit substantial reorganization of cortical somatosensory topography with enlargement of cortical areas responsive to facial stimuli. In the present study non-invasive magnetic source imaging technology has been used to map in detail the bilateral somatosensory homunculi in four neurologically normal controls and two upper arm amputees. Bilateral homuncular maps of normals and of the unaffected hemisphere of both amputees showed a wide hand area. The affected hemisphere of both amputees showed marked intrusion of facial representations into the digit and hand area consistent with the earlier observations in macaques. Our findings provide the first evidence of massive somatosensory plasticity in human adults and suggest a mechanism for post-amputation perceptual changes.

196 citations

Journal ArticleDOI
TL;DR: The stimuli designed ("enhanced illusory contours") might provide a novel probe for dissecting different stages involved in the processing of illusary contours and for understanding how the visual system combines different types of contours to construct object boundaries.

124 citations


Cited by
More filters
Journal ArticleDOI
19 Feb 1998-Nature
TL;DR: An illusion in which tactile sensations are referred to an alien limb is reported, which reveals a three-way interaction between vision, touch and proprioception, and may supply evidence concerning the basis of bodily self-identification.
Abstract: Illusions have historically been of great use to psychology for what they can reveal about perceptual processes. We report here an illusion in which tactile sensations are referred to an alien limb. The effect reveals a three-way interaction between vision, touch and proprioception, and may supply evidence concerning the basis of bodily self-identification.

3,422 citations

Journal Article
TL;DR: In this article, the authors propose that the brain produces an internal representation of the world, and the activation of this internal representation is assumed to give rise to the experience of seeing, but it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness.
Abstract: Many current neurophysiological, psychophysical, and psychological approaches to vision rest on the idea that when we see, the brain produces an internal representation of the world. The activation of this internal representation is assumed to give rise to the experience of seeing. The problem with this kind of approach is that it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness. An alternative proposal is made here. We propose that seeing is a way of acting. It is a particular way of exploring the environment. Activity in internal representations does not generate the experience of seeing. The outside world serves as its own, external, representation. The experience of seeing occurs when the organism masters what we call the governing laws of sensorimotor contingency. The advantage of this approach is that it provides a natural and principled way of accounting for visual consciousness, and for the differences in the perceived quality of sensory experience in the different sensory modalities. Several lines of empirical evidence are brought forward in support of the theory, in particular: evidence from experiments in sensorimotor adaptation, visual \"filling in,\" visual stability despite eye movements, change blindness, sensory substitution, and color perception.

2,271 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose that the brain produces an internal representation of the world, and the activation of this internal representation is assumed to give rise to the experience of seeing, but it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness.
Abstract: Many current neurophysiological, psychophysical, and psychological approaches to vision rest on the idea that when we see, the brain produces an internal representation of the world. The activation of this internal representation is assumed to give rise to the experience of seeing. The problem with this kind of approach is that it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness. An alternative proposal is made here. We propose that seeing is a way of acting. It is a particular way of exploring the environment. Activity in internal representations does not generate the experience of seeing. The outside world serves as its own, external, representation. The experience of seeing occurs when the organism masters what we call the governing laws of sensorimotor contingency. The advantage of this approach is that it provides a natural and principled way of accounting for visual consciousness, and for the differences in the perceived quality of sensory experience in the different sensory modalities. Several lines of empirical evidence are brought forward in support of the theory, in particular: evidence from experiments in sensorimotor adaptation, visual “filling in,” visual stability despite eye movements, change blindness, sensory substitution, and color perception.

2,264 citations

Journal ArticleDOI
TL;DR: The goal of the current paper is to review the fields of both synaptic and cortical map plasticity with an emphasis on the work that attempts to unite both fields, to highlight the gaps in the understanding of synaptic and cellular mechanisms underlying cortical representational plasticity.
Abstract: It has been clear for almost two decades that cortical representations in adult animals are not fixed entities, but rather, are dynamic and are continuously modified by experience. The cortex can preferentially allocate area to represent the particular peripheral input sources that are proportionally most used. Alterations in cortical representations appear to underlie learning tasks dependent on the use of the behaviorally important peripheral inputs that they represent. The rules governing this cortical representational plasticity following manipulations of inputs, including learning, are increasingly well understood. In parallel with developments in the field of cortical map plasticity, studies of synaptic plasticity have characterized specific elementary forms of plasticity, including associative long-term potentiation and long-term depression of excitatory postsynaptic potentials. Investigators have made many important strides toward understanding the molecular underpinnings of these fundamental plasticity processes and toward defining the learning rules that govern their induction. The fields of cortical synaptic plasticity and cortical map plasticity have been implicitly linked by the hypothesis that synaptic plasticity underlies cortical map reorganization. Recent experimental and theoretical work has provided increasingly stronger support for this hypothesis. The goal of the current paper is to review the fields of both synaptic and cortical map plasticity with an emphasis on the work that attempts to unite both fields. A second objective is to highlight the gaps in our understanding of synaptic and cellular mechanisms underlying cortical representational plasticity.

2,051 citations

Journal ArticleDOI
13 Oct 1995-Science
TL;DR: The results suggest that the representation of different parts of the body in the primary somatosensory cortex of humans depends on use and changes to conform to the current needs and experiences of the individual.
Abstract: Magnetic source imaging revealed that the cortical representation of the digits of the left hand of string players was larger than that in controls. The effect was smallest for the left thumb, and no such differences were observed for the representations of the right hand digits. The amount of cortical reorganization in the representation of the fingering digits was correlated with the age at which the person had begun to play. These results suggest that the representation of different parts of the body in the primary somatosensory cortex of humans depends on use and changes to conform to the current needs and experiences of the individual.

1,821 citations