scispace - formally typeset
Search or ask a question
Author

S. Cosenza

Bio: S. Cosenza is an academic researcher from Fiat Automobiles. The author has contributed to research in topics: Vehicular communication systems & Intelligent transportation system. The author has an hindex of 1, co-authored 1 publications receiving 816 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art approaches, solutions, and technologies across a broad range of projects for vehicular communication systems are surveyed.
Abstract: Numerous technologies have been deployed to assist and manage transportation. But recent concerted efforts in academia and industry point to a paradigm shift in intelligent transportation systems. Vehicles will carry computing and communication platforms, and will have enhanced sensing capabilities. They will enable new versatile systems that enhance transportation safety and efficiency and will provide infotainment. This article surveys the state-of-the-art approaches, solutions, and technologies across a broad range of projects for vehicular communication systems.

893 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management is provided in this paper, where a set of issues, challenges, and future research directions for MEC are discussed.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized mobile cloud computing toward mobile edge computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also discuss a set of issues, challenges, and future research directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,992 citations

Posted Content
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management and recent standardization efforts on MEC are introduced.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized Mobile Cloud Computing towards Mobile Edge Computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also present a research outlook consisting of a set of promising directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,289 citations

Proceedings ArticleDOI
25 Mar 2012
TL;DR: A time-average age metric is employed for the performance evaluation of status update systems and the existence of an optimal rate at which a source must generate its information to keep its status as timely as possible at all its monitors is shown.
Abstract: Increasingly ubiquitous communication networks and connectivity via portable devices have engendered a host of applications in which sources, for example people and environmental sensors, send updates of their status to interested recipients. These applications desire status updates at the recipients to be as timely as possible; however, this is typically constrained by limited network resources. In this paper, we employ a time-average age metric for the performance evaluation of status update systems. We derive general methods for calculating the age metric that can be applied to a broad class of service systems. We apply these methods to queue-theoretic system abstractions consisting of a source, a service facility and monitors, with the model of the service facility (physical constraints) a given. The queue discipline of first-come-first-served (FCFS) is explored. We show the existence of an optimal rate at which a source must generate its information to keep its status as timely as possible at all its monitors. This rate differs from those that maximize utilization (throughput) or minimize status packet delivery delay. While our abstractions are simpler than their real-world counterparts, the insights obtained, we believe, are a useful starting point in understanding and designing systems that support real time status updates.

1,879 citations

Journal ArticleDOI
TL;DR: The basic characteristics of vehicular networks are introduced, an overview of applications and associated requirements, along with challenges and their proposed solutions are provided, and the current and past major ITS programs and projects in the USA, Japan and Europe are provided.
Abstract: Vehicular networking has significant potential to enable diverse applications associated with traffic safety, traffic efficiency and infotainment. In this survey and tutorial paper we introduce the basic characteristics of vehicular networks, provide an overview of applications and associated requirements, along with challenges and their proposed solutions. In addition, we provide an overview of the current and past major ITS programs and projects in the USA, Japan and Europe. Moreover, vehicular networking architectures and protocol suites employed in such programs and projects in USA, Japan and Europe are discussed.

1,422 citations

Journal ArticleDOI
TL;DR: Various aspects of automotive radar signal processing techniques are summarized, including waveform design, possible radar architectures, estimation algorithms, implementation complexity-resolution trade off, and adaptive processing for complex environments, as well as unique problems associated with automotive radars such as pedestrian detection.
Abstract: Automotive radars, along with other sensors such as lidar, (which stands for "light detection and ranging"), ultrasound, and cameras, form the backbone of self-driving cars and advanced driver assistant systems (ADASs). These technological advancements are enabled by extremely complex systems with a long signal processing path from radars/sensors to the controller. Automotive radar systems are responsible for the detection of objects and obstacles, their position, and speed relative to the vehicle. The development of signal processing techniques along with progress in the millimeter-wave (mm-wave) semiconductor technology plays a key role in automotive radar systems. Various signal processing techniques have been developed to provide better resolution and estimation performance in all measurement dimensions: range, azimuth-elevation angles, and velocity of the targets surrounding the vehicles. This article summarizes various aspects of automotive radar signal processing techniques, including waveform design, possible radar architectures, estimation algorithms, implementation complexity-resolution trade off, and adaptive processing for complex environments, as well as unique problems associated with automotive radars such as pedestrian detection. We believe that this review article will combine the several contributions scattered in the literature to serve as a primary starting point to new researchers and to give a bird's-eye view to the existing research community.

705 citations