scispace - formally typeset
Search or ask a question
Author

S. D. Hunsberger

Bio: S. D. Hunsberger is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Gamma-ray burst & Afterglow. The author has an hindex of 25, co-authored 74 publications receiving 8780 citations. Previous affiliations of S. D. Hunsberger include University of California, Santa Cruz & Lowell Observatory.


Papers
More filters
Journal ArticleDOI
20 Aug 2004
TL;DR: The Swift mission as discussed by the authors is a multi-wavelength observatory for gamma-ray burst (GRB) astronomy, which is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions.
Abstract: The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr � 1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z >10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a newgeneration wide-field gamma-ray (15‐150 keV) detector that will detect bursts, calculate 1 0 ‐4 0 positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 00 positions and perform spectroscopy in the 0.2‐10 keV band; and a narrow-field UV/optical telescope that will operate in the 170‐ 600 nm band and provide 0B3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of � 1m crab (� 2;10 � 11 ergs cm � 2 s � 1 in the 15‐150 keV band), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of

3,753 citations

Journal ArticleDOI
TL;DR: The Ultra-Violet/Optical Telescope (UVOT) as discussed by the authors is one of the three instruments flying aboard the Swift Gamma-ray Observatory, which is designed to capture the early (∼1 min) UV and optical photons from the afterglow of gamma-ray bursts in the 170-600 nm band as well as long term observations of these afterglows.
Abstract: The Ultra-Violet/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (∼1 min) UV and optical photons from the afterglow of gamma-ray bursts in the 170–600 nm band as well as long term observations of these afterglows. This is accomplished through the use of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey–Chretien design with micro-channel plate intensified charged-coupled device detectors that record the arrival time of individual photons and provide sub-arcsecond positioning of sources. We discuss some of the science to be pursued by the UVOT and the overall design of the instrument.

1,635 citations

Journal ArticleDOI
TL;DR: The UV/Optical Telescope (UVOT) as discussed by the authors is one of the three instruments flying aboard the Swift Gamma-ray Observatory, which is designed to capture the early (approximately 1 minute) UV and optical photons from the afterglow of gamma-ray bursts in the 170-600 nm band.
Abstract: The UV/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (approximately 1 minute) UV and optical photons from the afterglow of gamma-ray bursts in the 170-600 nm band as well as long term observations of these afterglows. This is accomplished through the use of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey-Chretien design with micro-channel plate intensified charged-coupled device detectors that record the arrival time of individual photons and provide sub-arcsecond positioning of sources. We discuss some of the science to be pursued by the UVOT and the overall design of the instrument.

1,339 citations

Journal ArticleDOI
TL;DR: In this article, the photometric calibration of the Swift Ultraviolet/Optical Telescope (UVOT) was performed with observations of standard stars and standard star fields that represent a wide range of spectral star types.
Abstract: We present the photometric calibration of the Swift Ultraviolet/Optical Telescope (UVOT) which includes: optimum photometric and background apertures, effective area curves, colour transformations, conversion factors for count rates to flux and the photometric zero-points (which are accurate to better than 4 per cent) for each of the seven UVOT broad-band filters. The calibration was performed with observations of standard stars and standard star fields that represent a wide range of spectral star types. The calibration results include the position-dependent uniformity, and instrument response over the 1600‐8000 A operational range. Because the UVOT is a photon-counting instrument, we also discuss the effect of coincidence loss on the calibration results. We provide practical guidelines for using the calibration in UVOT data analysis. The results presented here supersede previous calibration results.

935 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a sample of 47 candidate dwarf galaxies associated with the tidal tails and arms in the groups and estimate the contribution of the tidal dwarf formation mechanism to the population of dwarf galaxies observed at large in compact groups.
Abstract: From R-band images of 42 Hickson compact groups, we present a sample of 47 candidate dwarf galaxies that are associated with the tidal tails and arms in the groups. The candidates, found in 15 tidal features, have R magnitudes and masses (for M/L = 1) in the ranges -16.5 < M_R - 5 log h_{75} < -11.5 and 2x10^6 M_{\odot} < M < 2x10^8 M_{\odot}, respectively. Their masses and locations are compared to the predictions of theoretical/N-body tidal dwarf formation scenarios. Considering the longevity of tidal debris in the compact group environment and the results of this survey, we estimate the contribution of the tidal dwarf formation mechanism to the population of dwarf galaxies observed at large in compact groups. If the majority of our dwarf galaxy candidates are confirmed as being gravitationally bound stellar systems, then a significant fraction, perhaps as much as one-half, of the dwarf population in compact groups is the product of interactions among giant parent galaxies.

137 citations


Cited by
More filters
Journal ArticleDOI
20 Aug 2004
TL;DR: The Swift mission as discussed by the authors is a multi-wavelength observatory for gamma-ray burst (GRB) astronomy, which is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions.
Abstract: The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr � 1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z >10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a newgeneration wide-field gamma-ray (15‐150 keV) detector that will detect bursts, calculate 1 0 ‐4 0 positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 00 positions and perform spectroscopy in the 0.2‐10 keV band; and a narrow-field UV/optical telescope that will operate in the 170‐ 600 nm band and provide 0B3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of � 1m crab (� 2;10 � 11 ergs cm � 2 s � 1 in the 15‐150 keV band), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of

3,753 citations

Journal ArticleDOI
TL;DR: At the highest luminosities (Lir > 1012 ), nearly all objects appear to be advanced mergers powered by a mixture of circumnuclear starburst and active galactic nucleus energy sources, both of which are fueled by an enormous concentration of molecular gas that has been funneled into the merger nucleus as discussed by the authors.
Abstract: ▪ Abstract At luminosities above 1011 , infrared galaxies become the dominant population of extragalactic objects in the local Universe (z ≲ 0.3), being more numerous than optically selected starburst and Seyfert galaxies and quasi-stellar objects at comparable bolometric luminosity. The trigger for the intense infrared emission appears to be the strong interaction/merger of molecular gas-rich spirals, and the bulk of the infrared luminosity for all but the most luminous objects is due to dust heating from an intense starburst within giant molecular clouds. At the highest luminosities (Lir > 1012 ), nearly all objects appear to be advanced mergers powered by a mixture of circumnuclear starburst and active galactic nucleus energy sources, both of which are fueled by an enormous concentration of molecular gas that has been funneled into the merger nucleus. These ultraluminous infrared galaxies may represent an important stage in the formation of quasi-stellar objects and powerful radio galaxies. They may al...

2,911 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

Journal ArticleDOI
01 Jan 2005
TL;DR: The Swift Gamma-Ray Explorer (XRT) as mentioned in this paper uses a mirror set built for JET-X and an XMM-Newton/EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with effective area of > 120 cm2 at 1.5 keV, field of view of 23.6 × 23. 6 arcminutes, and angular resolution of 18 arcseconds.
Abstract: he Swift Gamma-Ray Explorer is designed to make prompt multiwavelength observations of gamma-ray bursts (GRBs) and GRB afterglows. The X-ray telescope (XRT) enables Swift to determine GRB positions with a few arcseconds accuracy within 100 s of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/EPIC MOS CCD detector to provide a sensitive broad-band (0.2–10 keV) X-ray imager with effective area of > 120 cm2 at 1.5 keV, field of view of 23.6 × 23.6 arcminutes, and angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2×10−14 erg cm−2 s−1 in 104 s. The instrument is designed to provide automated source detection and position reporting within 5 s of target acquisition. It can also measure the redshifts of GRBs with Fe line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source intensity fades. The XRT will measure spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and will follow each burst for days or weeks.

2,253 citations

Journal ArticleDOI
TL;DR: The Ultra-Violet/Optical Telescope (UVOT) as discussed by the authors is one of the three instruments flying aboard the Swift Gamma-ray Observatory, which is designed to capture the early (∼1 min) UV and optical photons from the afterglow of gamma-ray bursts in the 170-600 nm band as well as long term observations of these afterglows.
Abstract: The Ultra-Violet/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (∼1 min) UV and optical photons from the afterglow of gamma-ray bursts in the 170–600 nm band as well as long term observations of these afterglows. This is accomplished through the use of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey–Chretien design with micro-channel plate intensified charged-coupled device detectors that record the arrival time of individual photons and provide sub-arcsecond positioning of sources. We discuss some of the science to be pursued by the UVOT and the overall design of the instrument.

1,635 citations