scispace - formally typeset
Search or ask a question
Author

S. Daher

Bio: S. Daher is an academic researcher from Control Group. The author has contributed to research in topics: Computer science & Inverter. The author has an hindex of 1, co-authored 1 publications receiving 524 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that versatile stand-alone photovoltaic (PV) systems still demand on at least one battery inverter with improved characteristics of robustness and efficiency, which can be achieved using multilevel topologies.
Abstract: This paper shows that versatile stand-alone photovoltaic (PV) systems still demand on at least one battery inverter with improved characteristics of robustness and efficiency, which can be achieved using multilevel topologies. A compilation of the most common topologies of multilevel converters is presented, and it shows which ones are best suitable to implement inverters for stand-alone applications in the range of a few kilowatts. As an example, a prototype of 3 kVA was implemented, and peak efficiency of 96.0% was achieved.

593 citations

Journal ArticleDOI
01 Jun 2022-Sensors
TL;DR: In this paper , an automatic slip control solution applied to a two-wheel-drive (2WD) electric tractor is presented, where the slip can be maintained within a specific range that depends on the type of soil.
Abstract: This work presents an automatic slip control solution applied to a two-wheel-drive (2WD) electric tractor. Considering that the slip can be maintained within a specific range that depends on the type of soil, it is possible to increase the tractive efficiency of the electric vehicle (EV). The control system can be easily designed considering only the longitudinal dynamics of the tractor while using simple proportional-integral (PI) controllers to drive the inverters associated with the rear wheels. The introduced solution is tested on an experimental electric tractor prototype traveling on firm soil considering case studies in which the slip control is enabled and disabled. The acquired results demonstrate that the slip control allows for obtaining a more stable performance and reduced energy consumption.

3 citations

Journal ArticleDOI
TL;DR: In this article , a bidirectional asymmetrical multilevel inverter (MLI) was proposed, which requires a single dc voltage source and low component count to obtain an ac output voltage with up to 15 levels.
Abstract: This brief presents a bidirectional asymmetrical multilevel inverter (MLI) that requires a single dc voltage source and low component count. Considering the weights assigned to the turns ratio involving the primary and multiple secondary windings of the transformer, as well as a proper switching logic, one can obtain an ac output voltage with up to 15 levels. The topology consists of a transformer, an H bridge on the primary side, and asymmetrical cells associated with bidirectional switches on the secondary side. Staircase modulation is employed to reduce the harmonic content of the output voltage, whereas a comprehensive analysis is derived. An experimental prototype rated at 1 kW is designed and implemented in the laboratory to validate the theoretical claims.

Cited by
More filters
Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations

01 Jan 1992
TL;DR: In this paper, a multilevel commutation cell is introduced for high-voltage power conversion, which can be applied to either choppers or voltage-source inverters and generalized to any number of switches.
Abstract: The authors discuss high-voltage power conversion. Conventional series connection and three-level voltage source inverter techniques are reviewed and compared. A novel versatile multilevel commutation cell is introduced: it is shown that this topology is safer and more simple to control, and delivers purer output waveforms. The authors show how this technique can be applied to either choppers or voltage-source inverters and generalized to any number of switches.<>

1,202 citations

Journal ArticleDOI
TL;DR: An inverter configuration based on three-level building blocks to generate five-level voltage waveforms is suggested and it is shown that such an inverter may be operated at a very low switching frequency to achieve minimum on-state and dynamic device losses for highly efficient MV drive applications while maintaining low harmonic distortion.
Abstract: This paper gives an overview of medium-voltage (MV) multilevel converters with a focus on achieving minimum harmonic distortion and high efficiency at low switching frequency operation. Increasing the power rating by minimizing switching frequency while still maintaining reasonable power quality is an important requirement and a persistent challenge for the industry. Existing solutions are discussed and analyzed based on their topologies, limitations, and control techniques. As a preferred option for future research and application, an inverter configuration based on three-level building blocks to generate five-level voltage waveforms is suggested. This paper shows that such an inverter may be operated at a very low switching frequency to achieve minimum on-state and dynamic device losses for highly efficient MV drive applications while maintaining low harmonic distortion.

1,150 citations

Journal ArticleDOI
TL;DR: In this article, some of the recently proposed multilevel inverter topologies with reduced power switch count are reviewed and analyzed, both in terms of the qualitative and quantitative parameters.
Abstract: Multilevel inverters have created a new wave of interest in industry and research. While the classical topologies have proved to be a viable alternative in a wide range of high-power medium-voltage applications, there has been an active interest in the evolution of newer topologies. Reduction in overall part count as compared to the classical topologies has been an important objective in the recently introduced topologies. In this paper, some of the recently proposed multilevel inverter topologies with reduced power switch count are reviewed and analyzed. The paper will serve as an introduction and an update to these topologies, both in terms of the qualitative and quantitative parameters. Also, it takes into account the challenges which arise when an attempt is made to reduce the device count. Based on a detailed comparison of these topologies as presented in this paper, appropriate multilevel solution can be arrived at for a given application.

890 citations

Journal ArticleDOI
TL;DR: This paper presents a single-phase cascaded H-bridge converter for a grid-connected photovoltaic (PV) application that offers other advantages such as the operation at lower switching frequency or lower current ripple compared to standard two-level topologies.
Abstract: This paper presents a single-phase cascaded H-bridge converter for a grid-connected photovoltaic (PV) application The multilevel topology consists of several H-bridge cells connected in series, each one connected to a string of PV modules The adopted control scheme permits the independent control of each dc-link voltage, enabling, in this way, the tracking of the maximum power point for each string of PV panels Additionally, low-ripple sinusoidal-current waveforms are generated with almost unity power factor The topology offers other advantages such as the operation at lower switching frequency or lower current ripple compared to standard two-level topologies Simulation and experimental results are presented for different operating conditions

728 citations