scispace - formally typeset
Search or ask a question
Author

S. Diez-Berart

Bio: S. Diez-Berart is an academic researcher from Polytechnic University of Catalonia. The author has contributed to research in topics: Liquid crystal & Phase transition. The author has an hindex of 11, co-authored 24 publications receiving 905 citations. Previous affiliations of S. Diez-Berart include University of the Basque Country & Liquid Crystal Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a detailed analysis of the glassy behavior and the relaxation dynamics of the liquid crystal dimer α-(4-cyanobiphenyl-4'-yloxy)-ω-(1-pyrenimine-benzylidene)-4'-oxy) heptane (CBO7O.Py) throughout both nematic and smectic-A mesophases by means of broadband dielectric spectroscopy was performed.
Abstract: In the present work, a detailed analysis of the glassy behavior and the relaxation dynamics of the liquid crystal dimer α-(4-cyanobiphenyl-4'-yloxy)-ω-(1-pyrenimine-benzylidene-4'-oxy) heptane (CBO7O.Py) throughout both nematic and smectic-A mesophases by means of broadband dielectric spectroscopy has been performed. CBO7O.Py shows three different dielectric relaxation modes and two glass transition (T_{g}) temperatures: The higher T_{g} is due to the freezing of the molecular motions responsible for the relaxation mode with the lowest frequency (μ_{1L}); the lower T_{g} is due to the motions responsible for the two relaxation modes with highest frequencies (μ_{1H} and μ_{2}), which converge just at their corresponding T_{g}. It is shown how the three modes follow a critical-like description via the dynamic scaling model. The two modes with lowest frequencies (μ_{1L} and μ_{1H}) are cooperative in the whole range of the mesophases, whereas the highest frequency mode (μ_{2}) is cooperative just below some crossover temperature. In terms of fragility, at the glass transition, the ensemble (μ_{1H}+μ_{2}) presents a value of the steepness index and μ_{1L} a different one, meaning that fragility is a property intrinsic to the molecular motion itself. Finally, the steepness index seems to have a universal behavior with temperature for the dielectric relaxation modes of liquid crystal dimers, being almost constant at high temperatures and increasing drastically when cooling the compound down to the glass transition from a temperature about 3/4T_{NI}.

5 citations

Journal ArticleDOI
TL;DR: In this article, the fragility as a function of thermodynamic parameters for a reduced set of OG-formers: cycloheptanol, cyclooctanol and their binary mixtures.

4 citations

Journal ArticleDOI
TL;DR: In this paper, measurements of pressure, molar volume and specific heat as functions of temperature in the isotropic (I) phase as well as in the smectic A (SmA) and nematic (N) mesophases of some alkyloxycyanobiphenyl compounds were carried out using differential thermal analysis under pressure, densitometry, X-ray powder diffraction and modulated differential scanning calorimetry.
Abstract: Measurements of pressure, molar volume and specific heat as functions of temperature in the isotropic (I) phase as well as in the smectic A (SmA) and nematic (N) mesophases of some alkyloxycyanobiphenyl compounds (nOCB, n = 6–10) were carried out using differential thermal analysis under pressure, densitometry, X‐ray powder diffraction and modulated differential scanning calorimetry. Thermodynamic properties, such as latent heats and volume jumps at the different phase transitions, were determined. The coherence of this whole set of data was tested using pressure–temperature data through the slopes associated to their phase transitions, extrapolated at normal pressure in the light of the Clausius–Clapeyron equation.

4 citations

Journal ArticleDOI
TL;DR: The Oonk's method is extended in order to account for second-order phase transitions and allows performing calculations of the tricritical temperature.
Abstract: A complete thermodynamic analysis on four two-component phase diagrams between liquid crystals belonging to the nCB and nOCB series of compounds, the so-called cyanobiphenyls, has been performed through the Oonk's equal Gibbs energy method. The binary systems dealt with in this paper show as a common feature the existence of a tricritical point at the SmA-to-N phase transition, all of which reported elsewhere. As a singular finding of the work proposed in this paper, the Oonk's method is extended in order to account for second-order phase transitions. Likewise, this extension allows performing calculations of the tricritical temperature.

3 citations

Journal ArticleDOI
TL;DR: In this article , the molecular dynamics of the twist-bend nematic phase close to the glass transition of two members of the 1″,7'-bis(4-cyanobiphenyl-4'-yl)alkane homologous series (CBnCB): the liquid crystal (LC) dimers CB9CB and CB7CB, as well as a binary mixture of both.
Abstract: We have performed dielectric spectroscopy and thermally stimulated-depolarization-current experiments to study the molecular dynamics of the twist-bend nematic phase close to the glass transition of two members of the 1″,7'-bis(4-cyanobiphenyl-4'-yl)alkane homologous series (CBnCB): the liquid crystal (LC) dimers CB9CB and CB7CB, as well as a binary mixture of both. By doping CB9CB with a small quantity of CB7CB, the crystallization is inhibited when cooling the sample down, while the bulk properties of CB9CB are retained and we can investigate the supercooled behavior close to the glass transition. The study reveals that the inter- and intramolecular interactions of the mixture are similar to those of pure CB9CB and confirms that there is a single glass transition in symmetric LC dimers.

Cited by
More filters
Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Book
01 Jan 1996
TL;DR: A review of the collected works of John Tate can be found in this paper, where the authors present two volumes of the Abel Prize for number theory, Parts I, II, edited by Barry Mazur and Jean-Pierre Serre.
Abstract: This is a review of Collected Works of John Tate. Parts I, II, edited by Barry Mazur and Jean-Pierre Serre. American Mathematical Society, Providence, Rhode Island, 2016. For several decades it has been clear to the friends and colleagues of John Tate that a “Collected Works” was merited. The award of the Abel Prize to Tate in 2010 added impetus, and finally, in Tate’s ninety-second year we have these two magnificent volumes, edited by Barry Mazur and Jean-Pierre Serre. Beyond Tate’s published articles, they include five unpublished articles and a selection of his letters, most accompanied by Tate’s comments, and a collection of photographs of Tate. For an overview of Tate’s work, the editors refer the reader to [4]. Before discussing the volumes, I describe some of Tate’s work. 1. Hecke L-series and Tate’s thesis Like many budding number theorists, Tate’s favorite theorem when young was Gauss’s law of quadratic reciprocity. When he arrived at Princeton as a graduate student in 1946, he was fortunate to find there the person, Emil Artin, who had discovered the most general reciprocity law, so solving Hilbert’s ninth problem. By 1920, the German school of algebraic number theorists (Hilbert, Weber, . . .) together with its brilliant student Takagi had succeeded in classifying the abelian extensions of a number field K: to each group I of ideal classes in K, there is attached an extension L of K (the class field of I); the group I determines the arithmetic of the extension L/K, and the Galois group of L/K is isomorphic to I. Artin’s contribution was to prove (in 1927) that there is a natural isomorphism from I to the Galois group of L/K. When the base field contains an appropriate root of 1, Artin’s isomorphism gives a reciprocity law, and all possible reciprocity laws arise this way. In the 1930s, Chevalley reworked abelian class field theory. In particular, he replaced “ideals” with his “idèles” which greatly clarified the relation between the local and global aspects of the theory. For his thesis, Artin suggested that Tate do the same for Hecke L-series. When Hecke proved that the abelian L-functions of number fields (generalizations of Dirichlet’s L-functions) have an analytic continuation throughout the plane with a functional equation of the expected type, he saw that his methods applied even to a new kind of L-function, now named after him. Once Tate had developed his harmonic analysis of local fields and of the idèle group, he was able prove analytic continuation and functional equations for all the relevant L-series without Hecke’s complicated theta-formulas. Received by the editors September 5, 2016. 2010 Mathematics Subject Classification. Primary 01A75, 11-06, 14-06. c ©2017 American Mathematical Society

2,014 citations

Journal ArticleDOI
TL;DR: This Review focuses on the developments of light-driven liquid crystalline materials containing photochromic components over the past decade, and the developed materials possess huge potential for applications in optics, photonics, adaptive materials, nanotechnology, etc.
Abstract: Light-driven phenomena both in living systems and nonliving materials have enabled truly fascinating and incredible dynamic architectures with terrific forms and functions. Recently, liquid crystalline materials endowed with photoresponsive capability have emerged as enticing systems. In this Review, we focus on the developments of light-driven liquid crystalline materials containing photochromic components over the past decade. Design and synthesis of photochromic liquid crystals (LCs), photoinduced phase transitions in LC, and photoalignment and photoorientation of LCs have been covered. Photomodulation of pitch, polarization, lattice constant and handedness inversion of chiral LCs is discussed. Light-driven phenomena and properties of liquid crystalline polymers, elastomers, and networks have also been analyzed. The applications of photoinduced phase transitions, photoalignment, photomodulation of chiral LCs, and photomobile polymers have been highlighted wherever appropriate. The combination of photoc...

576 citations

Journal ArticleDOI
TL;DR: This work experimentally demonstrates a new nematic order, formed by achiral molecules, in which the director follows an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing twist and bend.
Abstract: A state of matter in which molecules show a long-range orientational order and no positional order is called a nematic liquid crystal. The best known and most widely used (for example, in modern displays) is the uniaxial nematic, with the rod-like molecules aligned along a single axis, called the director. When the molecules are chiral, the director twists in space, drawing a right-angle helicoid and remaining perpendicular to the helix axis; the structure is called a chiral nematic. Here using transmission electron and optical microscopy, we experimentally demonstrate a new nematic order, formed by achiral molecules, in which the director follows an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing twist and bend. The oblique helicoids have a nanoscale pitch. The new twist-bend nematic represents a structural link between the uniaxial nematic (no tilt) and a chiral nematic (helicoids with right-angle tilt).

554 citations

Journal ArticleDOI
TL;DR: New exciting soft-matter structures distinct from the usually observed nematic, smectic, and columnar phases are presented, including multicompartment and cellular structures, periodic and quasiperiodic arrays of spheres, and new emergent properties, such as ferroelctricity and spontaneous achiral symmetry-breaking.
Abstract: Since the discovery of the liquid-crystalline state of matter 125 years ago, this field has developed into a scientific area with many facets. This Review presents recent developments in the molecular design and self-assembly of liquid crystals. The focus is on new exciting soft-matter structures distinct from the usually observed nematic, smectic, and columnar phases. These new structures have enhanced complexity, including multicompartment and cellular structures, periodic and quasiperiodic arrays of spheres, and new emergent properties, such as ferroelctricity and spontaneous achiral symmetry-breaking. Comparisons are made with developments in related fields, such as self-assembled monolayers, multiblock copolymers, and nanoparticle arrays. Measures of structural complexity used herein are the size of the lattice, the number of distinct compartments, the dimensionality, and the logic depth of the resulting supramolecular structures.

456 citations