scispace - formally typeset
Search or ask a question
Author

S.E. Grigorescu

Bio: S.E. Grigorescu is an academic researcher from University of Groningen. The author has contributed to research in topics: Image texture & Texture filtering. The author has an hindex of 4, co-authored 5 publications receiving 1062 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The grating cell operator is the only one that selectively responds only to texture and does not give false response to nontexture features such as object contours and the texture detection capabilities of the operators are compared.
Abstract: Texture features that are based on the local power spectrum obtained by a bank of Gabor filters are compared. The features differ in the type of nonlinear post-processing which is applied to the local power spectrum. The following features are considered: Gabor energy, complex moments, and grating cell operator features. The capability of the corresponding operators to produce distinct feature vector clusters for different textures is compared using two methods: the Fisher (1923) criterion and the classification result comparison. Both methods give consistent results. The grating cell operator gives the best discrimination and segmentation results. The texture detection capabilities of the operators and their robustness to nontexture features are also compared. The grating cell operator is the only one that selectively responds only to texture and does not give false response to nontexture features such as object contours.

738 citations

Proceedings ArticleDOI
27 Sep 1999
TL;DR: It is shown that, in general, the discrimination effectiveness of the features increases with the amount of post-Gabor processing.
Abstract: The performance of a number of texture feature operators is evaluated. The features are all based on the local spectrum which is obtained by a bank of Gabor filters. The comparison is made using a quantitative method which is based on Fisher's criterion. It is shown that, in general, the discrimination effectiveness of the features increases with the amount of post-Gabor processing.

340 citations

Proceedings ArticleDOI
03 Sep 2000
TL;DR: Texture feature extraction operators, which comprise linear filtering, eventually followed by post-processing, are considered and show that post- processing improves considerably the performance of filter based texture operators.
Abstract: Texture feature extraction operators, which comprise linear filtering, eventually followed by post-processing, are considered. The filters used are Laws' masks (1980), filters derived from well-known discrete transforms, and Gabor filters. The post-processing step comprises nonlinear point operations and/or local statistics computation. The performance is measured by means of the Mahalanobis distance between clusters of feature vectors derived from different textures. The results show that post-processing improves considerably the performance of filter based texture operators.

14 citations

Proceedings ArticleDOI
18 Sep 2003
TL;DR: The experimental results show that any of Renyi's entropies can be used for texel identification, but the second order entropy, due to its robust estimation, is the most reliable.
Abstract: We propose a texture analysis method based on Renyi's entropies. The method aims at identifying texels in regular textures by searching for the smallest window through which the minimum number of different visual patterns is observed when moving the window over a given texture. The experimental results show that any of Renyi's entropies can be used for texel identification. However, the second order entropy, due to its robust estimation, is the most reliable. The main advantages of the proposed method are its robustness and its flexibility. We illustrate the usefulness and the effectiveness of the method in a texture synthesis application and we compare it with other structural approaches.

5 citations


Cited by
More filters
Book
18 Feb 2002
TL;DR: The new edition of Feature Extraction and Image Processing provides an essential guide to the implementation of image processing and computer vision techniques, explaining techniques and fundamentals in a clear and concise manner, and features a companion website that includes worksheets, links to free software, Matlab files, solutions and new demonstrations.
Abstract: Image processing and computer vision are currently hot topics with undergraduates and professionals alike. "Feature Extraction and Image Processing" provides an essential guide to the implementation of image processing and computer vision techniques, explaining techniques and fundamentals in a clear and concise manner. Readers can develop working techniques, with usable code provided throughout and working Matlab and Mathcad files on the web. Focusing on feature extraction while also covering issues and techniques such as image acquisition, sampling theory, point operations and low-level feature extraction, the authors have a clear and coherent approach that will appeal to a wide range of students and professionals.The new edition includes: a new coverage of curvature in low-level feature extraction (SIFT and saliency) and features (phase congruency); geometric active contours; morphology; and camera models and an updated coverage of image smoothing (anistropic diffusion); skeletonization; edge detection; curvature; and shape descriptions (moments). It is an essential reading for engineers and students working in this cutting edge field. It is an ideal module text and background reference for courses in image processing and computer vision. It features a companion website that includes worksheets, links to free software, Matlab files, solutions and new demonstrations.

929 citations

Journal ArticleDOI
Jiayi Ma1, Yong Ma1, Chang Li1
TL;DR: This survey comprehensively survey the existing methods and applications for the fusion of infrared and visible images, which can serve as a reference for researchers inrared and visible image fusion and related fields.
Abstract: Infrared images can distinguish targets from their backgrounds based on the radiation difference, which works well in all-weather and all-day/night conditions. By contrast, visible images can provide texture details with high spatial resolution and definition in a manner consistent with the human visual system. Therefore, it is desirable to fuse these two types of images, which can combine the advantages of thermal radiation information in infrared images and detailed texture information in visible images. In this work, we comprehensively survey the existing methods and applications for the fusion of infrared and visible images. First, infrared and visible image fusion methods are reviewed in detail. Meanwhile, image registration, as a prerequisite of image fusion, is briefly introduced. Second, we provide an overview of the main applications of infrared and visible image fusion. Third, the evaluation metrics of fusion performance are discussed and summarized. Fourth, we select eighteen representative methods and nine assessment metrics to conduct qualitative and quantitative experiments, which can provide an objective performance reference for different fusion methods and thus support relative engineering with credible and solid evidence. Finally, we conclude with the current status of infrared and visible image fusion and deliver insightful discussions and prospects for future work. This survey can serve as a reference for researchers in infrared and visible image fusion and related fields.

849 citations

Journal ArticleDOI
TL;DR: The grating cell operator is the only one that selectively responds only to texture and does not give false response to nontexture features such as object contours and the texture detection capabilities of the operators are compared.
Abstract: Texture features that are based on the local power spectrum obtained by a bank of Gabor filters are compared. The features differ in the type of nonlinear post-processing which is applied to the local power spectrum. The following features are considered: Gabor energy, complex moments, and grating cell operator features. The capability of the corresponding operators to produce distinct feature vector clusters for different textures is compared using two methods: the Fisher (1923) criterion and the classification result comparison. Both methods give consistent results. The grating cell operator gives the best discrimination and segmentation results. The texture detection capabilities of the operators and their robustness to nontexture features are also compared. The grating cell operator is the only one that selectively responds only to texture and does not give false response to nontexture features such as object contours.

738 citations

Journal ArticleDOI
TL;DR: The proposed biologically motivated method to improve contour detection in machine vision, called nonclassical receptive field (non-CRF) inhibition (more generally, surround inhibition or suppression), is proposed and is more useful for contour-based object recognition tasks, than traditional edge detectors, which do not distinguish between contour and texture edges.
Abstract: We propose a biologically motivated method, called nonclassical receptive field (non-CRF) inhibition (more generally, surround inhibition or suppression), to improve contour detection in machine vision. Non-CRF inhibition is exhibited by 80% of the orientation-selective neurons in the primary visual cortex of monkeys and has been shown to influence human visual perception as well. Essentially, the response of an edge detector at a certain point is suppressed by the responses of the operator in the region outside the supported area. We combine classical edge detection with isotropic and anisotropic inhibition, both of which have counterparts in biology. We also use a biologically motivated method (the Gabor energy operator) for edge detection. The resulting operator responds strongly to isolated lines, edges, and contours, but exhibits weak or no response to edges that are part of texture. We use natural images with associated ground truth contour maps to assess the performance of the proposed operator for detecting contours while suppressing texture edges. Our method enhances contour detection in cluttered visual scenes more effectively than classical edge detectors used in machine vision (Canny edge detector). Therefore, the proposed operator is more useful for contour-based object recognition tasks, such as shape comparison, than traditional edge detectors, which do not distinguish between contour and texture edges. Traditional edge detection algorithms can, however, also be extended with surround suppression. This study contributes also to the understanding of inhibitory mechanisms in biology.

411 citations

Journal ArticleDOI
TL;DR: A comprehensive survey in a systematic approach about the state-of-the-art on-road vision-based vehicle detection and tracking systems for collision avoidance systems (CASs).
Abstract: Over the past decade, vision-based vehicle detection techniques for road safety improvement have gained an increasing amount of attention. Unfortunately, the techniques suffer from robustness due to huge variability in vehicle shape (particularly for motorcycles), cluttered environment, various illumination conditions, and driving behavior. In this paper, we provide a comprehensive survey in a systematic approach about the state-of-the-art on-road vision-based vehicle detection and tracking systems for collision avoidance systems (CASs). This paper is structured based on a vehicle detection processes starting from sensor selection to vehicle detection and tracking. Techniques in each process/step are reviewed and analyzed individually. Two main contributions in this paper are the following: survey on motorcycle detection techniques and the sensor comparison in terms of cost and range parameters. Finally, the survey provides an optimal choice with a low cost and reliable CAS design in vehicle industries.

354 citations