scispace - formally typeset
Search or ask a question
Author

S.H. Keshmiri

Bio: S.H. Keshmiri is an academic researcher from Ferdowsi University of Mashhad. The author has contributed to research in topics: Resonator & Thin film. The author has an hindex of 10, co-authored 17 publications receiving 583 citations. Previous affiliations of S.H. Keshmiri include Polytechnic University of Catalonia.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, MoO 3 was thermally evaporated onto gold interdigital fingers on quartz substrates and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and TEM techniques.
Abstract: In this work, MoO 3 was thermally evaporated onto gold interdigital fingers on quartz substrates and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques The deposited MoO 3 consist of stratified long rectangles (average length of 50 μm width of 5 μm and thickness of 500 nm) which are predominantly orthorhombic (α-MoO 3 ) Each of these plates was composed of many nano-thick layers (average ∼30 nm) placed by Van der Waals forces on top of each other forming lamellar patterns The devices were used as sensors and exhibited considerable change in surface conductivity when exposed to NO 2 and H 2 gases at elevated temperature of 225 °C The structural and gas sensing properties of thermally evaporated MoO 3 thin films were investigated

256 citations

Journal ArticleDOI
TL;DR: In this article, a comparison between the effect of spray pyrolysis-deposited seed layers and well-ordered sputter deposited seed layers, along with their respective ZnO nano-morphologies that were obtained via hydrothermal growth was made.

96 citations

Journal ArticleDOI
TL;DR: The structural, optical, and gas-sensing properties of spray pyrolysis deposited Cu doped ZnO thin films were investigated in this article, where the observed p-type conductivity is attributed to the holes generated by incorporated Cu atoms on Zn sites.
Abstract: The structural, optical, and gas-sensing properties of spray pyrolysis deposited Cu doped ZnO thin films were investigated. Gas response of the undoped and doped films to NO2 (oxidizing) gas shows an increase and decrease in resistance, respectively, indicating p-type conduction in doped samples. The UV-Vis spectra of the films show decrease in the bandgap with increasing Cu concentration in ZnO. The observed p-type conductivity is attributed to the holes generated by incorporated Cu atoms on Zn sites in ZnO thin films. The X-ray diffraction spectra showed that samples are polycrystalline with the hexagonal wurtzite structure and increasing the concentration of Cu caused a decrease in the intensity of the dominant (002) peak. The surface morphology of films was studied by scanning electron microscopy and the presence of Cu was also confirmed by X-ray photoelectron spectroscopy. Seebeck effect measurements were utilized to confirm the p-type conduction of Cu doped ZnO thin films.

78 citations

Journal ArticleDOI
TL;DR: In this article, a simple technique is proposed for post-deposition treatment of ITO films to improve their properties, and it has been found that exposure of it to atomic-hydrogen plasma produces a significant increase in the electrical conductivity of the films.

40 citations

Journal ArticleDOI
TL;DR: In this paper, a periodic nanostructure patterned into a polymeric or indium tin oxide (ITO) surface is used to align liquid crystal (LC) molecules.
Abstract: We show that a periodic nanostructure patterned into a polymeric or indium tin oxide (ITO) surface is capable of aligning liquid crystal (LC) molecules. Gratings of different depths were created on thin polymeric or ITO surfaces with submicron and micron periods by superposition of ultraviolet plane waves. The depth of the gratings was varied by changing the fluence of the laser. This method allows to pattern orientations over small areas and does not suffer from the disadvantages of rubbing based alignment methods. LC alignment was tested by forming twisted nematic cells. Anchoring energies were calculated from measurements of the twist angles.

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors focus on recent progress in advanced nanostructured materials (NSMs) as building blocks for EEDs (such as fuel cells, supercapacitors, and Li-ion batteries) based on investigations at the 0D, 1D, 2D and 3D NSMs.

845 citations

Journal ArticleDOI
TL;DR: Various factors such as NO2 concentrations, annealing temperature, ZnO morphologies and particle sizes, relative humidity, operating temperatures which are affecting the NO2 gas sensing properties are discussed in this review.
Abstract: Because of the interesting and multifunctional properties, recently, ZnO nanostructures are considered as excellent material for fabrication of highly sensitive and selective gas sensors. Thus, ZnO nanomaterials are widely used to fabricate efficient gas sensors for the detection of various hazardous and toxic gases. The presented review article is focusing on the recent developments of NO2 gas sensors based on ZnO nanomaterials. The review presents the general introduction of some metal oxide nanomaterials for gas sensing application and finally focusing on the structure of ZnO and its gas sensing mechanisms. Basic gas sensing characteristics such as gas response, response time, recovery time, selectivity, detection limit, stability and recyclability, etc are also discussed in this article. Further, the utilization of various ZnO nanomaterials such as nanorods, nanowires, nano-micro flowers, quantum dots, thin films and nanosheets, etc for the fabrication of NO2 gas sensors are also presented. Moreover, various factors such as NO2 concentrations, annealing temperature, ZnO morphologies and particle sizes, relative humidity, operating temperatures which are affecting the NO2 gas sensing properties are discussed in this review. Finally, the review article is concluded and future directions are presented.

607 citations

Journal ArticleDOI
TL;DR: In this paper, the most important experimental results at a level of detail appropriate for new graduate students who are interested in a general overview of the fascinating properties of graphene from an experimental perspective.
Abstract: This review examines the properties of graphene from an experimental perspective. The intent is to review the most important experimental results at a level of detail appropriate for new graduate students who are interested in a general overview of the fascinating properties of graphene. While some introductory theoretical concepts are provided, including a discussion of the electronic band structure and phonon dispersion, the main emphasis is on describing relevant experiments and important results as well as some of the novel applications of graphene. In particular, this review covers graphene synthesis and characterization, field-effect behavior, electronic transport properties, magnetotransport, integer and fractional quantum Hall effects, mechanical properties, transistors, optoelectronics, graphene-based sensors, and biosensors. This approach attempts to highlight both the means by which the current understanding of graphene has come about and some tools for future contributions.

577 citations

Journal ArticleDOI
TL;DR: The properties and applications of molybdenum oxides are reviewed in depth, while an insightful outlook into future prospective applications for moly bdenum oxide is presented.
Abstract: The properties and applications of molybdenum oxides are reviewed in depth. Molybdenum is found in various oxide stoichiometries, which have been employed for different high-value research and commercial applications. The great chemical and physical characteristics of molybdenum oxides make them versatile and highly tunable for incorporation in optical, electronic, catalytic, bio, and energy systems. Variations in the oxidation states allow manipulation of the crystal structure, morphology, oxygen vacancies, and dopants, to control and engineer electronic states. Despite this overwhelming functionality and potential, a definitive resource on molybdenum oxide is still unavailable. The aim here is to provide such a resource, while presenting an insightful outlook into future prospective applications for molybdenum oxides.

465 citations

Journal ArticleDOI
30 May 2012-Sensors
TL;DR: This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO 2, TiO2, In2O3, WOx, AgVO3, CdO, MoO 3, CuO, TeO2 and Fe2O2.
Abstract: Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research.

453 citations