scispace - formally typeset
Search or ask a question
Author

S Harris

Bio: S Harris is an academic researcher. The author has contributed to research in topics: Conservation status & Diversity (politics). The author has an hindex of 3, co-authored 3 publications receiving 322 citations.


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the changes in agriculture and biodiversity in Britain since the 1940s have been quantified, showing that since 1945, there has been a 65% decline in the number of farms, a 77% reduction in farm labour and an almost fourfold increase in yield.
Abstract: Summary 1. Agriculture represents the dominant land use throughout much of western Europe, and a significant part of European biodiversity is associated with this habitat. We attempted to quantify the changes in agriculture and biodiversity in Britain since the 1940s. 2. There have been widespread declines in the populations of many groups of organisms associated with farmland in Britain and north-west Europe. The declines have been particularly marked amongst habitat specialists; many of the taxa still common on farmland are habitat generalists. 3. Farming practices have become increasingly intensive in the post-war period, with a dramatic reduction in landscape diversity. Since 1945, there has been a 65% decline in the number of farms, a 77% decline in farm labour and an almost fourfold increase in yield. Farms have become more specialized; the greatly increased use of machinery has made operations quicker and more efficient, but has resulted in the removal of 50% of the hedgerow stock. Autumn sowing of crops has become predominant, with winter stubbles now far less prevalent. The number and extent of chemical applications has increased greatly, but the net amount applied, and their persistence, has decreased in recent years. 4. Intensification has had a wide range of impacts on biodiversity, but data for many taxa are too scarce to permit a detailed assessment of the factors involved. Reduction in habitat diversity was important in the 1950s and 1960s; reduction in habitat quality is probably more important now. 5. As a case study, the declines in populations of seed-eating birds populations were assessed in relation to changing agricultural management. Generally, the declines were likely to be caused by a reduced food supply in the non-breeding season, although other factors may be important for particular species. 6. Agriculture will face a number of challenges in the medium term. While research into the mechanisms underlying species and habitat associations, and their interaction with scale, will be critical in under-pinning management, consideration of farmer attitudes and socio-economic factors is likely to be as important. Biodiversity may benefit from integrated farming techniques but these need to incorporate environmental objectives explicitly, rather than as a fringe benefit.

1,497 citations

Journal ArticleDOI
TL;DR: In a time of massive environmental change across the globe, the continuing encroachment of urbanization upon wilderness areas is substantially reducing the availability of natural habitats for many species; therefore, understanding the biology of any taxon that is able to adapt to and exploit anthropogenically disturbed systems must aid us in both controlling and developing suitable conservation measures for the future of such species.
Abstract: Cities may represent one of the most challenging environments for carnivorous mammals. For example, cities have a dearth of vegetation and other natural resources, coupled with increased habitat fragmentation and an abundance of roads as well as altered climate (e.g. temperature, light, rainfall and water runoff). It is therefore intriguing that several carnivore species have become established in cities across the globe. Medium-sized carnivores such as the red fox, coyote, Eurasian badger and raccoon not only survive in cities but also have managed to exploit anthropogenic food sources and shelter to their significant advantage, achieving higher population densities than are found under natural conditions. In addition, although they may not live permanently within cities, even large carnivores such as bears, wolves and hyaenas derive significant benefit from living adjacent to urbanized areas. In this review, we examine the history of urban adaptation by mammalian carnivores, explore where they are living, what they eat, what kills them and the behavioural consequences of living in urban areas. We review the biology of urban carnivores, exploring traits such as body size and dietary flexibility. Finally, we consider the consequences of having populations of carnivores in urbanized areas, both for humans and for these charismatic mammals. In conclusion, in a time of massive environmental change across the globe, the continuing encroachment of urbanization upon wilderness areas is substantially reducing the availability of natural habitats for many species; therefore, understanding the biology of any taxon that is able to adapt to and exploit anthropogenically disturbed systems must aid us in both controlling and developing suitable conservation measures for the future of such species.

558 citations

Journal ArticleDOI
TL;DR: Evidence suggests that top predators may function as structuring agents and biodiversity indicators in some ecosystems but not others, and that they perform poorly as umbrella species; more consensus exists for their efficacy as sentinel and flagship species.
Abstract: We review the ecological rationale behind the potential compatibility between top predators and biodiversity conservation, and examine their effectiveness as surrogate species. Evidence suggests that top predators promote species richness or are spatio-temporally associated with it for six causative or noncausative reasons: resource facilitation, trophic cascades, dependence on ecosystem productivity, sensitivity to dysfunctions, selection of heterogeneous sites and links to multiple ecosystem components. Therefore, predator-centered conservation may deliver certain biodiversity goals. To this aim, predators have been employed in conservation as keystone, umbrella, sentinel, flagship, and indicator species. However, quantitative tests of their surrogate-efficacy have been astonishingly few. Evidence suggests they may function as structuring agents and biodiversity indicators in some ecosystems but not others, and that they perform poorly as umbrella species; more consensus exists for their efficacy as sentinel and flagship species. Conservation biologists need to use apex predators more cautiously, as part of wider, context-dependent mixed strategies.

521 citations

Journal ArticleDOI
TL;DR: Investigation of potential management practices that could reduce the numbers of wild animals killed and brought home by cats will be useful for wildlife conservation, particularly in suburban areas.
Abstract: A questionnaire survey of the numbers of animals brought home by domestic cats Felis catus was conducted between 1 April and 31 August 1997. A total of 14 370 prey items were brought home by 986 cats living in 618 households. Mammals made up 69% of the items, birds 24%, amphibians 4%, reptiles 1%, fish < 1%, invertebrates 1% and unidentified items 1%. A minimum of 44 species of wild bird, 20 species of wild mammal, four species of reptile and three species of amphibian were recorded. 2. Of a sample of 696 individual cats, 634 (91%) brought home at least one item and the back-transformed mean number of items brought home was 11.3 (95% CI 10.4-12.2). The back-transformed means and number of cats retrieving at least one item from each prey group were: 8.1 (7.4-8.9) mammals for 547 (79%) cats, 4.1 (3.8-4.5) birds for 506 (73%) cats, 2.6 (2.2-3.0) herpetofauna for 145 (21%) cats and 2.2 (1.8-2.7) other items for 98 (14%) cats. 3. The number of birds and herpetofauna brought home per cat was significantly lower in households that provided food for birds. The number of bird species brought home was greater in households providing bird food. The number of birds and herpetofauna brought home per cat was negatively related to the age and condition of the cat. The number of mammals brought home per cat was significantly lower when cats were equipped with bells and when they were kept indoors at night. The number of herpetofauna brought home was significantly greater when cats were kept in at night. 4. Based on the proportion of cats bringing home at least one prey item and the back- transformed means, a British population of approximately 9 million cats was estimated to have brought home in the order of 92 (85-100) million prey items in the period of this survey, including 57 (52-63) million mammals, 27 (25-29) million birds and 5 (4-6) million reptiles and amphibians. 5. An experimental approach should be taken to investigate the factors found by this descriptive survey to influence the numbers of prey brought home by cats. In particular, investigation of potential management practices that could reduce the numbers of wild animals killed and brought home by cats will be useful for wildlife conservation, particularly in suburban areas.

419 citations

Journal ArticleDOI
TL;DR: Higher foraging activity in bats suggests that habitat quality in terms of prey availability is greater on organic farms, and as the number of organic enterprises increases it may help to reverse declines in bat populations.
Abstract: Summary 1. Agricultural intensification is perceived to be a major cause of the decline in many European bat populations. Because organic farming prohibits the use of agrochemicals, we compared organic vs. conventional farm types to test the hypothesis that agricultural intensification based on high levels of agrochemical use has been a factor in bat population declines. Bat activity and species richness were compared on matched pairs of organic and conventional farms. 2. Bat activity was quantified using acoustic surveys within specific habitats on farms in southern England and Wales. Eighty-nine per cent of bat passes were identified to species level using artificial neural networks (ANN). A further 9% were identified to genus. 3. Total bat activity was significantly higher on organic farms than on conventional farms. Significantly more bat passes were recorded over water on organic farms than on conventional farms. Foraging activity (quantified in two ways: total feedings buzzes and feeding buzzes per pass) was significantly higher on organic farms than on conventional farms. 4. The dominant species on both farm types were Pipistrellus pipistrellus and Pipistrellus pygmaeus . Significantly more passes of Myotis species were recorded on organic farms than on conventional farms. This difference was also significant when water habitats were considered alone. 5. The activity of both Myotis daubentonii and Myotis brandtii was significantly higher on organic farms than on conventional farms. The activity of Myotis bechsteinii and Myotis brandtii was significantly higher over organic water habitats than over conventional water habitats. Rhinolophus hipposideros and Rhinolophus ferrumequinum were only recorded on organic farms in wooded, arable and pasture habitats. 6. Synthesis and applications. This study highlights the position of bats as bioindicators and victims of agricultural change. The differences in bat activity between farm types may reflect features such as taller hedgerows and better water quality on organic farms. Higher foraging activity also suggests that habitat quality in terms of prey availability is greater on organic farms. Less intensive farming benefits bats, and as the number of organic enterprises increases it may help to reverse declines in bat populations.

298 citations