scispace - formally typeset
Search or ask a question
Author

S. J. Tanner

Other affiliations: California State University
Bio: S. J. Tanner is an academic researcher from Moss Landing Marine Laboratories. The author has contributed to research in topics: Phytoplankton & Iron fertilization. The author has an hindex of 9, co-authored 9 publications receiving 4195 citations. Previous affiliations of S. J. Tanner include California State University.

Papers
More filters
Journal ArticleDOI
08 Sep 1994-Nature
TL;DR: Findings indicate that iron limitation can control rates of phytoplankton productivity and biomass in the ocean.
Abstract: The idea that iron might limit phytoplankton growth in large regions of the ocean has been tested by enriching an area of 64 km2 in the open equatorial Pacific Ocean with iron This resulted in a doubling of plant biomass, a threefold increase in chlorophyll and a fourfold increase in plant production Similar increases were found in a chlorophyll-rich plume down-stream of the Galapagos Islands, which was naturally enriched in iron These findings indicate that iron limitation can control rates of phytoplankton productivity and biomass in the ocean

1,346 citations

Journal ArticleDOI
10 Oct 1996-Nature
TL;DR: Observations provide unequivocal support for the hypothesis that phytoplankton growth in this oceanic region is limited by iron bioavailability.
Abstract: The seeding of an expanse of surface waters in the equatorial Pacific Ocean with low concentrations of dissolved iron triggered a massive phytoplankton bloom which consumed large quantities of carbon dioxide and nitrate that these microscopic plants cannot fully utilize under natural conditions. These and other observations provide unequivocal support for the hypothesis that phytoplankton growth in this oceanic region is limited by iron bioavailability.

1,318 citations

Journal ArticleDOI
16 Apr 2004-Science
TL;DR: Two mesoscale experiments, designed to investigate the effects of iron enrichment in regions with high and low concentrations of silicic acid, were performed in the Southern Ocean, demonstrating iron's pivotal role in controlling carbon uptake and regulating atmospheric partial pressure of carbon dioxide.
Abstract: The availability of iron is known to exert a controlling influence on biological productivity in surface waters over large areas of the ocean and may have been an important factor in the variation of the concentration of atmospheric carbon dioxide over glacial cycles. The effect of iron in the Southern Ocean is particularly important because of its large area and abundant nitrate, yet iron-enhanced growth of phytoplankton may be differentially expressed between waters with high silicic acid in the south and low silicic acid in the north, where diatom growth may be limited by both silicic acid and iron. Two mesoscale experiments, designed to investigate the effects of iron enrichment in regions with high and low concentrations of silicic acid, were performed in the Southern Ocean. These experiments demonstrate iron's pivotal role in controlling carbon uptake and regulating atmospheric partial pressure of carbon dioxide.

615 citations

Journal ArticleDOI
TL;DR: In this paper, the North Atlantic spring bloom was measured every other day towards the end (18-31 May) of the 1989 NABE spring bloom and the carbon and nitrogen fluxes were estimated using free-floating, VERTEX type particle trap arrays.
Abstract: Primary production was measured every other day towards the end (18–31 May) of the 1989 North Atlantic spring bloom. Rates varied with light and averaged 90.4 mmol C m−2 day−1 at the 47°N, 20°W station. Productivities measured south of Iceland (59°30′N, 20°45′W) were somewhat lower, averaging 83.6 mmol C m−2 day−1. Carbon and nitrogen fluxes were estimated using free-floating, VERTEX type particle trap arrays. To obtain mean rates representative of the North Atlantic spring bloom, flux data from three trap deployments were combined and fitted to normalized power functions: mmol C m−2 day−1 = 14.35 (z/100)−0.946, mmol N m−2 day−1 = 2.34(z/100)−1.02, with depth z in meters. Regeneration rates were: mmol C m−2 day−1 = 0.136(z/100)−1.946, mmol N m−2 day−1 = 0.0239(z/100)−2.02. The carbon export rate from the upper 35 m for the entire NABE study period (24 April to 1 June) was 39 mmol m−2 day−1. This value divided by the averaged productivity for the entire study (86 mmol N m−2 day−1) gave an F-ratio of 0.45. Concentrations of Cu, Fe, Ni, Pb and Zn were determined in water samples provided by JGOFS NABE scientists involved with primary productivity measurements. Although little contamination was observed for Cu, Ni and Pb, relatively large amounts of Zn (10 nmol kg−1) were found in some cases. In subsequent studies it was learned that this quantity of Zn can depress productivity rates by 25%. North Atlantic dissolved Fe concentrations were similar to those occurring in the Pacific (surface = 0.07; deep = 0.5–0.6 nmol kg−1). Although no evidence of Fe deficiency was found in enrichment experiments, the addition of nmol amounts of Fe did increase CO2 uptake and POC formation by factors of 1.3–1.7. In this region, most of the phytoplankton's Fe requirement is probably met via the lateral transport of Fe from distant continental margins.

293 citations

Journal ArticleDOI
TL;DR: In nearly a dozen open-ocean fertilization experiments conducted by more than 100 researchers from nearly 20 countries, adding iron at the sea surface has led to distinct increases in photosynthesis rates and biomass as discussed by the authors.
Abstract: In nearly a dozen open-ocean fertilization experiments conducted by more than 100 researchers from nearly 20 countries, adding iron at the sea surface has led to distinct increases in photosynthesis rates and biomass. These experiments confirmed the hypothesis proposed by the late John Martin [Martin, 1990] that dissolved iron concentration is a key variable that controls phytoplankton processes in ocean surface waters However, the measurement of dissolved iron concentration in seawater remains a difficult task [Bruland and Rue, 2001] with significant interlaboratory differences apparent at times. The availability of a seawater reference solution with well-known dissolved iron (Fe) concentrations similar to open-ocean values, which could be used for the calibration of equipment or other tasks, would greatly alleviate these problems [National Research Council (NRC), 2002

274 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The relationship between harmful algal blooms and eutrophication of coastal waters from human activities has been investigated in this paper, focusing on sources of nutrients, known effects of nutrient loading and reduction, new understanding of pathways of nutrient acquisition among HAB species, and relationships between nutrients and toxic algae.
Abstract: Although algal blooms, including those considered toxic or harmful, can be natural phenomena, the nature of the global problem of harmful algal blooms (HABs) has expanded both in extent and its public perception over the last several decades. Of concern, especially for resource managers, is the potential relationship between HABs and the accelerated eutrophication of coastal waters from human activities. We address current insights into the relationships between HABs and eutrophication, focusing on sources of nutrients, known effects of nutrient loading and reduction, new understanding of pathways of nutrient acquisition among HAB species, and relationships between nutrients and toxic algae. Through specific, regional, and global examples of these various relationships, we offer both an assessment of the state of understanding, and the uncertainties that require future research efforts. The sources of nutrients poten- tially stimulating algal blooms include sewage, atmospheric deposition, groundwater flow, as well as agricultural and aquaculture runoff and discharge. On a global basis, strong correlations have been demonstrated between total phos- phorus inputs and phytoplankton production in freshwaters, and between total nitrogen input and phytoplankton pro- duction in estuarine and marine waters. There are also numerous examples in geographic regions ranging from the largest and second largest U.S. mainland estuaries (Chesapeake Bay and the Albemarle-Pamlico Estuarine System), to the Inland Sea of Japan, the Black Sea, and Chinese coastal waters, where increases in nutrient loading have been linked with the development of large biomass blooms, leading to anoxia and even toxic or harmful impacts on fisheries re- sources, ecosystems, and human health or recreation. Many of these regions have witnessed reductions in phytoplankton biomass (as chlorophyll a) or HAB incidence when nutrient controls were put in place. Shifts in species composition have often been attributed to changes in nutrient supply ratios, primarily N:P or N:Si. Recently this concept has been extended to include organic forms of nutrients, and an elevation in the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC:DON) has been observed during several recent blooms. The physiological strategies by which different groups of species acquire their nutrients have become better understood, and alternate modes of nutrition such as heterotrophy and mixotrophy are now recognized as common among HAB species. Despite our increased un- derstanding of the pathways by which nutrients are delivered to ecosystems and the pathways by which they are assimilated differentially by different groups of species, the relationships between nutrient delivery and the development of blooms and their potential toxicity or harmfulness remain poorly understood. Many factors such as algal species presence/ abundance, degree of flushing or water exchange, weather conditions, and presence and abundance of grazers contribute to the success of a given species at a given point in time. Similar nutrient loads do not have the same impact in different environments or in the same environment at different points in time. Eutrophication is one of several mechanisms by which harmful algae appear to be increasing in extent and duration in many locations. Although important, it is not the only explanation for blooms or toxic outbreaks. Nutrient enrichment has been strongly linked to stimulation of some harmful species, but for others it has not been an apparent contributing factor. The overall effect of nutrient over- enrichment on harmful algal species is clearly species specific.

2,500 citations

Journal ArticleDOI
10 Jul 1998-Science
TL;DR: Elucidating the biogeochemical controls and feedbacks on primary production is essential to understanding how oceanic biota responded to and affected natural climatic variability in the geological past, and will respond to anthropogenically influenced changes in coming decades.
Abstract: Changes in oceanic primary production, linked to changes in the network of global biogeochemical cycles, have profoundly influenced the geochemistry of Earth for over 3 billion years. In the contemporary ocean, photosynthetic carbon fixation by marine phytoplankton leads to formation of approximately 45 gigatons of organic carbon per annum, of which 16 gigatons are exported to the ocean interior. Changes in the magnitude of total and export production can strongly influence atmospheric CO2 levels (and hence climate) on geological time scales, as well as set upper bounds for sustainable fisheries harvest. The two fluxes are critically dependent on geophysical processes that determine mixed-layer depth, nutrient fluxes to and within the ocean, and food-web structure. Because the average turnover time of phytoplankton carbon in the ocean is on the order of a week or less, total and export production are extremely sensitive to external forcing and consequently are seldom in steady state. Elucidating the biogeochemical controls and feedbacks on primary production is essential to understanding how oceanic biota responded to and affected natural climatic variability in the geological past, and will respond to anthropogenically influenced changes in coming decades. One of the most crucial feedbacks results from changes in radiative forcing on the hydrological cycle, which influences the aeolian iron flux and, in turn, affects nitrogen fixation and primary production in the oceans.

2,337 citations

Journal ArticleDOI
01 Oct 2004-Science
TL;DR: The 34 million-base-pair draft nuclear genome of the marine diatom Thalassiosira pseudonana and its 129 thousand-base pair plastid and 44 thousand base-pair mitochondrial genomes were reported in this article.
Abstract: Diatoms are unicellular algae with plastids acquired by secondary endosymbiosis. They are responsible for approximately 20% of global carbon fixation. We report the 34 million-base pair draft nuclear genome of the marine diatom Thalassiosira pseudonana and its 129 thousand-base pair plastid and 44 thousand-base pair mitochondrial genomes. Sequence and optical restriction mapping revealed 24 diploid nuclear chromosomes. We identified novel genes for silicic acid transport and formation of silica-based cell walls, high-affinity iron uptake, biosynthetic enzymes for several types of polyunsaturated fatty acids, use of a range of nitrogenous compounds, and a complete urea cycle, all attributes that allow diatoms to prosper in aquatic environments.

1,945 citations

Book
29 May 2006
TL;DR: Reynolds as discussed by the authors provides basic information on composition, morphology and physiology of the main phyletic groups represented in marine and freshwater systems and reviews recent advances in community ecology, developing an appreciation of assembly processes, co-existence and competition, disturbance and diversity.
Abstract: Communities of microscopic plant life, or phytoplankton, dominate the Earth's aquatic ecosystems. This important new book by Colin Reynolds covers the adaptations, physiology and population dynamics of phytoplankton communities in lakes and rivers and oceans. It provides basic information on composition, morphology and physiology of the main phyletic groups represented in marine and freshwater systems and in addition reviews recent advances in community ecology, developing an appreciation of assembly processes, co-existence and competition, disturbance and diversity. Although focussed on one group of organisms, the book develops many concepts relevant to ecology in the broadest sense, and as such will appeal to graduate students and researchers in ecology, limnology and oceanography.

1,856 citations

Journal ArticleDOI
13 Oct 2000-Science
TL;DR: It is concluded that although natural processes can potentially slow the rate of increase in atmospheric CO2, there is no natural "savior" waiting to assimilate all the anthropogenically produced CO2 in the coming century.
Abstract: :Motivated by the rapid increase in atmospheric CO2 due to human activities since the Industrial Revolution, several international scientific research programs have analyzed the role of individual components of the Earth system in the global carbon cycle. Our knowledge of the carbon cycle within the oceans, terrestrial ecosystems, and the atmosphere is sufficiently extensive to permit us to conclude that although natural processes can potentially slow the rate of increase in atmospheric CO 2, there is no natural “savior” waiting to assimilate all the anthropogenically produced CO 2 in the coming century. Our knowledge is insufficient to describe the interactions between the components of the Earth system and the relationship between the carbon cycle and other biogeochemical and climatological processes. Overcoming this limitation requires a systems approach.

1,839 citations