scispace - formally typeset
Search or ask a question
Author

S.K. Garg

Bio: S.K. Garg is an academic researcher. The author has contributed to research in topics: 2,3-Butanediol & Butanediol. The author has an hindex of 1, co-authored 1 publications receiving 210 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The production of 2,3-butanediol by bacterial species continues to be of great interest because of its varied application as discussed by the authors, and two bacterial species, Bacillus polymyxa and Klebsiella pneumoniae have demonstrated potential for butanediol fermentation on a commercial scale.

230 citations


Cited by
More filters
Journal ArticleDOI
01 May 2003
TL;DR: In this article, various pre-treatment options as well as enzymatic saccharification of lignocellulosic biomass to fermentable sugars are reviewed and the barriers, progress, and prospects of developing an environmentally benign bioprocess for large-scale conversion of hemicellulose to fuel ethanol, xylitol, 2,3-butanediol, and other value added fermentation products are highlighted.
Abstract: Various agricultural residues, such as corn fiber, corn stover, wheat straw, rice straw, and sugarcane bagasse, contain about 20–40% hemicellulose, the second most abundant polysaccharide in nature. The conversion of hemicellulose to fuels and chemicals is problematic. In this paper, various pretreatment options as well as enzymatic saccharification of lignocellulosic biomass to fermentable sugars is reviewed. Our research dealing with the pretreatment and enzymatic saccharification of corn fiber and development of novel and improved enzymes such as endo-xylanase, β-xylosidase, and α-l-arabinofuranosidase for hemicellulose bioconversion is described. The barriers, progress, and prospects of developing an environmentally benign bioprocess for large-scale conversion of hemicellulose to fuel ethanol, xylitol, 2,3-butanediol, and other value-added fermentation products are highlighted.

1,651 citations

Journal ArticleDOI
TL;DR: Various strategies for efficient and economical microbial 2,3-butanediol production, including strain improvement, substrate alternation, and process development, are reviewed and compared with regard to their pros and cons.

592 citations

Journal ArticleDOI
TL;DR: This review summarizes hitherto gained knowledge and experience in biotechnological production of 2,3-BD, sources of biomass used, employed microorganisms both wild type and genetically improved strains, as well as operating conditions applied.

534 citations

Journal ArticleDOI
TL;DR: It is argued that separation technologies such as aqueous two-phase extraction with short chain alcohols, pervaporation, reverse osmosis, and in situ extractive or pervaporative fermentations deserve more attention in the future.
Abstract: 1,3-Propanediol and 2,3-butanediol are two promising chemicals which have a wide range of applications and can be biologically produced. The separation of these diols from fermentation broth makes more than 50% of the total costs in their microbial production. This review summarizes the present state of methods studied for the recovery and purification of biologically produced diols, with particular emphasis on 1,3-propoanediol. Previous studies on the separation of 1,3-propanediol primarily include evaporation, distillation, membrane filtration, pervaporation, ion exchange chromatography, liquid-liquid extraction, and reactive extraction. Main methods for the recovery of 2,3-butanediol include steam stripping, pervaporation, and solvent extraction. No single method has proved to be simple and efficient, and improvements are especially needed with regard to yield, purity, and energy consumption. Perspectives for an improved downstream processing of biologically produced diols, especially 1,3-propanediol are discussed based on our own experience and recent work. It is argued that separation technologies such as aqueous two-phase extraction with short chain alcohols, pervaporation, reverse osmosis, and in situ extractive or pervaporative fermentations deserve more attention in the future.

358 citations

Journal ArticleDOI
TL;DR: This is the first integrated review on acetoin metabolism in bacteria, especially with regard to catabolic aspects, and the relationship between the two conflicting acetoin cleavage pathways is discussed.
Abstract: Acetoin is an important physiological metabolite excreted by many microorganisms. The excretion of acetoin, which can be diagnosed by the Voges Proskauer test and serves as a microbial classification marker, has its vital physiological meanings to these microbes mainly including avoiding acification, participating in the regulation of NAD/NADH ratio, and storaging carbon. The well-known anabolism of acetoin involves α-acetolactat synthase and α-acetolactate decarboxylase; yet its catabolism still contains some differing views, although much attention has been focused on it and great advances have been achieved. Current findings in catabolite control protein A (CcpA) mediated carbon catabolite repression may provide a fuller understanding of the control mechanism in bacteria. In this review, we first examine the acetoin synthesis pathways and its physiological meanings and relevancies; then we discuss the relationship between the two conflicting acetoin cleavage pathways, the enzymes of the acetoin dehydro...

327 citations