scispace - formally typeset
Search or ask a question
Author

S. Kasiviswanathan

Other affiliations: Indian Institutes of Technology
Bio: S. Kasiviswanathan is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Thin film & Rutherford backscattering spectrometry. The author has an hindex of 13, co-authored 34 publications receiving 328 citations. Previous affiliations of S. Kasiviswanathan include Indian Institutes of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: The Seebeck voltage obtained for constantan wire is in agreement with the NIST data for copper constantan couple and the calculated carrier concentration of ITO film from the Seebeck coefficient measurement is comparable with that obtained by electrical transport measurements.
Abstract: An experimental setup is developed for the measurement of the Seebeck coefficient of thin wires and thin films in the temperature range of 300–650K. The setup makes use of the integral method for measuring the Seebeck voltage across the sample. Two pointed copper rods with in-built thermocouples serve as hot and cold probes as well as leads for measuring the Seebeck voltage. The setup employs localized heating and enables easy sample loading using a spring loaded mounting system and is fully automated. Test measurements are made on a constantan wire and indium tin oxide (ITO) thin film for illustration. The Seebeck voltage obtained for constantan wire is in agreement with the NIST data for copper constantan couple with an error of 1%. The calculated carrier concentration of ITO film from the Seebeck coefficient measurement is comparable with that obtained by electrical transport measurements. The error in the Seebeck coefficient is estimated to be within 3%.

39 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively.
Abstract: Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

33 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a melt-quench technique to synthesize 3 Se 5 thin films by stepwise flash evaporation from the polycrystalline powder source.

22 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the thermal stability of thin films formed from the solid-state reaction of Ag-Se diffusion couples on Si substrates covered with a thin Cr film, and revealed the formation of polycrystalline orthorhombic silver selenide films that remain stable without compositional change upon thermal annealing.
Abstract: Thermal stability of silver selenide thin films formed from the solid-state reaction of Ag-Se diffusion couples on Si substrates covered with a thin Cr film, is investigated. Glancing angle X-ray diffraction (GXRD), XPS, atomic force microscopy (AFM) and Rutherford backscattering spectrometry (RBS) are used to characterize the as-deposited films and those annealed at 100, 200, 300, and 400 °C. The results reveal the formation of polycrystalline orthorhombic silver selenide films that remain stable without compositional change upon thermal annealing, in marked contrast to the agglomeration exhibited by silver selenide films deposited on Si without Cr film. The improvement in the thermal stability is attributed to compressive stress relief by a grainy morphology with large surface area, the formation of which is promoted by partially oxidized Cr adhesion film.

21 citations

Journal ArticleDOI
TL;DR: In this paper, the magnetic properties of ball-milled TbFe2 and Tb Fe2B were studied by magnetization measurements and it was found that boron occupied interstitial position in the crystal structure, just as hydrogen did.
Abstract: The magnetic properties of ball-milled TbFe2 and TbFe2B were studied by magnetization measurements. X-ray diffraction studies on TbFe2B showed that boron occupied interstitial position in the crystal structure, just as hydrogen did. The value of the saturation magnetization of TbFe2B was found to be smaller than that of TbFe2. This is explained on the basis of a charge transfer between the boron atoms and the 3d band of Fe. The anisotropy of TbFe2B was found to be large compared to that of TbFe2. X-ray diffractograms for the ball milled samples showed that after 80 h of milling, a predominantly amorphous phase was obtained. TbFe2B was found to undergo easy amorphization compared to TbFe2. Magnetization of TbFe2 was found to decrease rapidly with initial milling hours and was found to be constant with further hours of milling. TbFe2B exhibited an anomalous behaviour with an increase in moment with milling hours and this may be due to the segregation of α-Fe.

21 citations


Cited by
More filters
01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
TL;DR: As n-type TCOs are of special importance for thin film solar cell production, indium-tin oxide (ITO) and the reasonably priced aluminum-doped zinc oxide (ZnO:Al), are discussed with view on preparation, characterization and special occurrences.
Abstract: Transparent conducting oxides (TCOs) are electrical conductive materials with comparably low absorption of electromagnetic waves within the visible region of the spectrum. They are usually prepared with thin film technologies and used in opto-electrical apparatus such as solar cells, displays, opto-electrical interfaces and circuitries. Here, based on a modern database-system, aspects of up-to-date material selections and applications for transparent conducting oxides are sketched, and references for detailed information are given. As n-type TCOs are of special importance for thin film solar cell production, indium-tin oxide (ITO) and the reasonably priced aluminum-doped zinc oxide (ZnO:Al), are discussed with view on preparation, characterization and special occurrences. For completion, the recently frequently mentioned typical p-type delafossite TCOs are described as well, providing a variety of references, as a detailed discussion is not reasonable within an overview publication.

346 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art of In2O3 in terms of semiconductor applications is summarized, with the focus on the charge carrier transport properties of the material.
Abstract: The present review takes a semiconductor physics perspective to summarize the state-of-the art of In2O3 in relation to applications. After discussing conventional and novel applications, the crystal structure, synthesis of single-crystalline material, band-structure and optical transparency are briefly introduced before focussing on the charge carrier transport properties. The issues of unintentional n-type conductivity and its likely causes, the surface electron accumulation, and the lack of p-type conductivity will be presented. Intentional doping will be demonstrated to control the electron concentration and resistivity over a wide range, but is also subject to compensation. The control of the surface accumulation in relation to Schottky and ohmic contacts will be demonstrated. In the context of scattering mechanisms, the electron mobility and its limits will be discussed. Finally, the Seebeck coefficient and its significance will be shown, and ferromagnetic doping of In2O3 will be critically discussed. With this overview most if not all ingredients for the use of In2O3 as semiconductor material in novel or improved conventional devices will be given.

231 citations

Patent
12 Aug 2011
TL;DR: In this article, a method of preparing tunable inorganic patterned nanofeatures by infiltration of a block copolymer scaffold having a plurality of self-assembled periodic polymer microdomains is presented.
Abstract: A method of preparing tunable inorganic patterned nanofeatures by infiltration of a block copolymer scaffold having a plurality of self-assembled periodic polymer microdomains. The method may be used sequential infiltration synthesis (SIS), related to atomic layer deposition (ALD). The method includes selecting a metal precursor that is configured to selectively react with the copolymer unit defining the microdomain but is substantially non-reactive with another polymer unit of the copolymer. A tunable inorganic features is selectively formed on the microdomain to form a hybrid organic/inorganic composite material of the metal precursor and a co-reactant. The organic component may be optionally removed to obtain an inorganic feature s with patterned nanostructures defined by the configuration of the microdomain.

160 citations

Journal ArticleDOI
TL;DR: The recent advances in Surface plasmon resonance technologies focusing on detection speed, sensitivity, and portability are described and significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are reviewed.
Abstract: Abstract Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.

130 citations