scispace - formally typeset
Search or ask a question
Author

S.L. Wadekar

Bio: S.L. Wadekar is an academic researcher from Bhabha Atomic Research Centre. The author has contributed to research in topics: Ultimate tensile strength & Deformation (engineering). The author has an hindex of 9, co-authored 12 publications receiving 352 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a cylindrical notched tensile sample with an extended end is employed for hydrogen charging and a constant uni-axial tensile load is applied during hydrogen charging.
Abstract: A novel procedure for hydrogen charging and studying the Internal Hydrogen Embrittlement (IHE) of steels is described here. A cylindrical notched tensile sample with an extended end is employed for hydrogen charging. The extended portion of the sample forms the cathode in an alkaline bath and a constant uni-axial tensile load is applied during hydrogen charging. The stress gradient set up by the notch, which is not in contact with the electrolyte, enhances the hydrogen concentration at various trapping sites of the matrix beyond the solubility limit. Subsequent to charging, the specimen is kept under the same load as that during charging, for another 24 h to stabilize the population of hydrogen within the specimen matrix. At the end of this stage, the specimen is tensile tested to failure at room temperature. Two different steels namely maraging and mild steels have been chosen to study the effect of hydrogen ingress on mechanical properties. While an increase in tangent modulus (linear portion of the stress–strain diagram), yield strength, work hardening rate and ultimate tensile stress (UTS) has been observed on hydrogenation, a decrease in total elongation has been noticed for both the steels studied. Fractographic investigation has revealed that the fracture mode is predominantly ductile dimple (failure by micro-void coalescence) in both the materials and that the hydrogen reduces the size of the dimples. The observations of this investigation are significant in two respects: firstly, it demonstrates the efficacy of a hydrogen charging method for steels which can introduce hydrogen to a level much higher than its solubility limit and secondly, it reports for the first time enhancement of modulus and work hardening by hydrogen charging. These observations have been rationalized on the basis of current understanding on the effect of hydrogen on plastic properties and hypothesis of the models of IHE. It is suggested that the trapping of hydrogen by dislocations and other structural features of the matrix and the mutual interactions of their strain fields can account for the observed effects on yield strength, tangent modulus, work hardening rate, UTS and ductility.

122 citations

Journal ArticleDOI
TL;DR: AISI 403, a martensitic stainless steel in the quenched and tempered condition has been subjected to uni-axial tension test at a range of strain rates (2×10−5−10−2 s−1) and a series of temperatures (25−500°C) to investigate the effect of temperature and strain rate on its mechanical properties.
Abstract: AISI 403, a martensitic stainless steel in the quenched and tempered condition has been subjected to uni-axial tension test at a range of strain rates (2×10−5–10−2 s−1) and a range of temperatures (25–500°C) to investigate the effect of temperature and strain rate on its mechanical properties. Serrated flow behaviour, predominately of type A and B, has been observed in the temperature range of 250–375°C and at strain rates lower than 10−3 s−1, which suggests the presence of dynamic strain aging (DSA) in this parametric domain. In this domain, while an increase in ultimate tensile strength and work hardening have been observed, the yield strength has been found to be nearly independent of temperature. A loss in ductility, due to the presence of DSA has also been seen in this material. The solute responsible for serrated flow has been identified to be chromium, which is the major alloying addition in this material. McCormick’s method has been employed to determine the activation energy from the knowledge of critical strain for the appearance of serrations as a function of strain rate and temperature. The magnitude of activation energy is approximately 50% of that for bulk diffusion of chromium in body centered cubic iron suggesting that a mechanism other than volume diffusion is involved.

83 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the dynamic strain-ageing behavior of a nuclear structural steel, designated ASTM A203 grade D, in tempered martensitic and ferritic-pearlitic microstructural conditions.

35 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of grain size on superplastic deformation in Zr −2.5% Nb was studied by constructing processing maps, which depict the variation of strain rate sensitivity with temperature and strain rate.
Abstract: The effect of grain size on superplastic deformation in Zr–2.5 wt.%Nb was studied by constructing processing maps (which depict the variation of strain rate sensitivity with temperature and strain rate) in the temperature range of 650–830 °C and strain rate range of 5 × 10 −6 to 2 × 10 −3 s −1 . The occurrence of superplastic domain with respect to temperature and strain rate was identified for three grain sizes (4, 10 and 16 μm). The 4 μm grain size material exhibited a domain centered around 800 °C and 10 −4 s −1 , exhibiting a ductility of 700%. With increasing grain size the domain shifts to higher temperatures and lower strain rates. A detailed characterization of deformed microstructure revealed equiaxed grain structure (curved boundaries) with considerable grain growth within the superplastic domain. Creep equation was used to evaluate the parameters of superplastic deformation, which resulted in activation energy of 125 kJ/mol and a grain size exponent of 1.6. The accommodation mechanism for superplastic deformation was deduced to be either non-conservative jog motion or grain boundary migration, with the rate controlling step for both being the grain boundary diffusion of Zr and Nb in β phase.

31 citations

Journal ArticleDOI
TL;DR: In this paper, fracture toughness of unirradiated cold pilgered pressure tubes (PT) has been studied as a function of temperature and hydrogen levels, and two methods of J-R curve evaluation, from small curved compact tension specimen, have been employed.

31 citations


Cited by
More filters
Journal ArticleDOI
Abstract: This article presents an overview of the developments in stainless steels made since the 1990s. Some of the new applications that involve the use of stainless steel are also introduced. A brief introduction to the various classes of stainless steels, their precipitate phases and the status quo of their production around the globe is given first. The advances in a variety of subject areas that have been made recently will then be presented. These recent advances include (1) new findings on the various precipitate phases (the new J phase, new orientation relationships, new phase diagram for the Fe–Cr system, etc.); (2) new suggestions for the prevention/mitigation of the different problems and new methods for their detection/measurement and (3) new techniques for surface/bulk property enhancement (such as laser shot peening, grain boundary engineering and grain refinement). Recent developments in topics like phase prediction, stacking fault energy, superplasticity, metadynamic recrystallisation and the calculation of mechanical properties are introduced, too. In the end of this article, several new applications that involve the use of stainless steels are presented. Some of these are the use of austenitic stainless steels for signature authentication (magnetic recording), the utilisation of the cryogenic magnetic transition of the sigma phase for hot spot detection (the Sigmaplugs), the new Pt-enhanced radiopaque stainless steel (PERSS) coronary stents and stainless steel stents that may be used for magnetic drug targeting. Besides recent developments in conventional stainless steels, those in the high-nitrogen, low-Ni (or Ni-free) varieties are also introduced. These recent developments include new methods for attaining very high nitrogen contents, new guidelines for alloy design, the merits/demerits associated with high nitrogen contents, etc.

1,668 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of hydrogen-fueled internal combustion engines (H 2 ICEs) can be found in this paper, where the authors discuss the fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

743 citations

Book ChapterDOI
29 Jul 2014
TL;DR: The types of sensors reviewed in this chapter are (1) room-temperature hydrogen leak sensors; (2) thermometers, particularly useful at low temperature; (3) liquid hydrogen volume and mass gauges; and (4) para/ortho hydrogen ratiometers as mentioned in this paper.
Abstract: Four types of hydrogen detectors are used by researchers, engineers, and manufacturers today, and if hydrogen continues to play a role in emerging alternative energy sources, there will be exponential growth in the use and need for more advanced and more robust devices in the future. The types of sensors reviewed in this chapter are (1) room-temperature hydrogen leak sensors; (2) thermometers, particularly useful at low temperature; (3) liquid hydrogen volume and mass gauges; and (4) para/ortho hydrogen ratiometers.

631 citations

Journal ArticleDOI
TL;DR: In this article, the effects of tempering temperature and time on the microstructure, mechanical and corrosion properties of AISI420 have been studied and the experimental results showed that the austeitizing temperature significantly affects mechanical properties.

246 citations

Journal ArticleDOI
TL;DR: In this article, previous researcher's development on hydrogen as a possible major fuel of the future has been studied thoroughly and the acceptability of hydrogen technology depends on the knowledge and awareness of the hydrogen benefits towards environment and human life.
Abstract: As hydrogen fuel cell vehicles move from manifestation to commercialization, the users expect safe, convenient and customer-friendly fuelling. Hydrogen quality affects fuel cell stack performance and lifetime, as well as other factors such as valve operation. In this paper, previous researcher's development on hydrogen as a possible major fuel of the future has been studied thoroughly. Hydrogen is one of the energy carriers which can replace fossil fuel and can be used as fuel in an internal combustion engines and as a fuel cell in vehicles. To use hydrogen as a fuel of internal combustion engine, engine design should be considered for avoiding abnormal combustion. As a result it can improve engine efficiency, power output and reduce NOx emissions. The emission of fuel cell is low as compared to conventional vehicles but as penalty, fuel cell vehicles need additional space and weight to install the battery and storage tank, thus increases it production cost. The production of hydrogen can be ‘carbon-free’ only if it is generated by employing genuinely carbon-free renewable energy sources. The acceptability of hydrogen technology depends on the knowledge and awareness of the hydrogen benefits towards environment and human life. Recent study shows that people still do not have the sufficient information of hydrogen.

235 citations