scispace - formally typeset
Search or ask a question
Author

S.L. Yates

Bio: S.L. Yates is an academic researcher. The author has contributed to research in topics: Noise. The author has an hindex of 1, co-authored 1 publications receiving 1034 citations.
Topics: Noise

Papers
More filters
Journal ArticleDOI
TL;DR: The noise sensitivities of nine different QRS detection algorithms were measured for a normal, single-channel, lead-II, synthesized ECG corrupted with five different types of synthesized noise: electromyographic interference, 60-Hz power line interference, baseline drift due to respiration, abrupt baseline shift, and a composite noise constructed from all of the other noise types.
Abstract: The noise sensitivities of nine different QRS detection algorithms were measured for a normal, single-channel, lead-II, synthesized ECG corrupted with five different types of synthesized noise: electromyographic interference, 60-Hz power line interference, baseline drift due to respiration, abrupt baseline shift, and a composite noise constructed from all of the other noise types. The percentage of QRS complexes detected, the number of false positives, and the detection delay were measured. None of the algorithms were able to detect all QRS complexes without any false positives for all of the noise types at the highest noise level. Algorithms based on amplitude and slope had the highest performance for EMG-corrupted ECG. An algorithm using a digital filter had the best performance for the composite-noise-corrupted data. >

1,083 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examined the physiological origins and mechanisms of heart rate variability, considered quantitative approaches to measurement, and highlighted important caveats in the interpretation of heart rates variability, and outlined guidelines for research in this area.
Abstract: Components of heart rate variability have attracted considerable attention in psychology and medicine and have become important dependent measures in psychophysiology and behavioral medicine. Quantification and interpretation of heart rate variability, however, remain complex issues and are fraught with pitfalls. The present report (a) examines the physiological origins and mechanisms of heart rate variability, (b) considers quantitative approaches to measurement, and (c) highlights important caveats in the interpretation of heart rate variability. Summary guidelines for research in this area are outlined, and suggestions and prospects for future developments are considered.

3,273 citations

Journal ArticleDOI
TL;DR: A robust single-lead electrocardiogram (ECG) delineation system based on the wavelet transform (WT), outperforming the results of other well known algorithms, especially in determining the end of T wave.
Abstract: In this paper, we developed and evaluated a robust single-lead electrocardiogram (ECG) delineation system based on the wavelet transform (WT). In a first step, QRS complexes are detected. Then, each QRS is delineated by detecting and identifying the peaks of the individual waves, as well as the complex onset and end. Finally, the determination of P and T wave peaks, onsets and ends is performed. We evaluated the algorithm on several manually annotated databases, such as MIT-BIH Arrhythmia, QT, European ST-T and CSE databases, developed for validation purposes. The QRS detector obtained a sensitivity of Se=99.66% and a positive predictivity of P+=99.56% over the first lead of the validation databases (more than 980,000 beats), while for the well-known MIT-BIH Arrhythmia Database, Se and P+ over 99.8% were attained. As for the delineation of the ECG waves, the mean and standard deviation of the differences between the automatic and manual annotations were computed. The mean error obtained with the WT approach was found not to exceed one sampling interval, while the standard deviations were around the accepted tolerances between expert physicians, outperforming the results of other well known algorithms, especially in determining the end of T wave.

1,490 citations

Journal ArticleDOI
TL;DR: The authors provide an overview of these recent developments as well as of formerly proposed algorithms for QRS detection, which reflects the electrical activity within the heart during the ventricular contraction.
Abstract: The QRS complex is the most striking waveform within the electrocardiogram (ECG). Since it reflects the electrical activity within the heart during the ventricular contraction, the time of its occurrence as well as its shape provide much information about the current state of the heart. Due to its characteristic shape it serves as the basis for the automated determination of the heart rate, as an entry point for classification schemes of the cardiac cycle, and often it is also used in ECG data compression algorithms. In that sense, QRS detection provides the fundamentals for almost all automated ECG analysis algorithms. Software QRS detection has been a research topic for more than 30 years. The evolution of these algorithms clearly reflects the great advances in computer technology. Within the last decade many new approaches to QRS detection have been proposed; for example, algorithms from the field of artificial neural networks genetic algorithms wavelet transforms, filter banks as well as heuristic methods mostly based on nonlinear transforms. The authors provide an overview of these recent developments as well as of formerly proposed algorithms.

1,307 citations

Journal ArticleDOI
TL;DR: A finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin, is proposed.
Abstract: The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications.

783 citations