scispace - formally typeset
Search or ask a question
Author

S.M.R. Soroushmehr

Bio: S.M.R. Soroushmehr is an academic researcher from University of Michigan. The author has contributed to research in topics: Convolutional neural network & Segmentation. The author has an hindex of 13, co-authored 29 publications receiving 660 citations.

Papers
More filters
Proceedings ArticleDOI
01 Aug 2016
TL;DR: Experimental results show that the proposed method for detection of melanoma lesions is superior in terms of diagnostic accuracy in comparison with the state-of-the-art methods.
Abstract: Melanoma, most threatening type of skin cancer, is on the rise. In this paper an implementation of a deep-learning system on a computer server, equipped with graphic processing unit (GPU), is proposed for detection of melanoma lesions. Clinical (non-dermoscopic) images are used in the proposed system, which could assist a dermatologist in early diagnosis of this type of skin cancer. In the proposed system, input clinical images, which could contain illumination and noise effects, are preprocessed in order to reduce such artifacts. Afterward, the enhanced images are fed to a pre-trained convolutional neural network (CNN) which is a member of deep learning models. The CNN classifier, which is trained by large number of training samples, distinguishes between melanoma and benign cases. Experimental results show that the proposed method is superior in terms of diagnostic accuracy in comparison with the state-of-the-art methods.

221 citations

Proceedings ArticleDOI
01 Dec 2016
TL;DR: The experimental results show that the proposed method for accurate extraction of lesion region can outperform the existing state-of-the-art algorithms in terms of segmentation accuracy.
Abstract: Melanoma is the most aggressive form of skin cancer and is on rise. There exists a research trend for computerized analysis of suspicious skin lesions for malignancy using images captured by digital cameras. Analysis of these images is usually challenging due to existence of disturbing factors such as illumination variations and light reflections from skin surface. One important stage in diagnosis of melanoma is segmentation of lesion region from normal skin. In this paper, a method for accurate extraction of lesion region is proposed that is based on deep learning approaches. The input image, after being preprocessed to reduce noisy artifacts, is applied to a deep convolutional neural network (CNN). The CNN combines local and global contextual information and outputs a label for each pixel, producing a segmentation mask that shows the lesion region. This mask will be further refined by some post processing operations. The experimental results show that our proposed method can outperform the existing state-of-the-art algorithms in terms of segmentation accuracy.

140 citations

Journal ArticleDOI
TL;DR: This Perspective provides examples of current and future applications of deep learning in pharmacogenomics, including: identification of novel regulatory variants located in noncoding domains of the genome and their function as applied to pharmacoepigenomics; patient stratification from medical records; and the mechanistic prediction of drug response, targets and their interactions.
Abstract: This Perspective provides examples of current and future applications of deep learning in pharmacogenomics, including: identification of novel regulatory variants located in noncoding domains of the genome and their function as applied to pharmacoepigenomics; patient stratification from medical records; and the mechanistic prediction of drug response, targets and their interactions. Deep learning encapsulates a family of machine learning algorithms that has transformed many important subfields of artificial intelligence over the last decade, and has demonstrated breakthrough performance improvements on a wide range of tasks in biomedicine. We anticipate that in the future, deep learning will be widely used to predict personalized drug response and optimize medication selection and dosing, using knowledge extracted from large and complex molecular, epidemiological, clinical and demographic datasets.

106 citations

Proceedings ArticleDOI
01 Aug 2016
TL;DR: Experimental results on angiography images of a dataset show that the proposed deep learning approach using convolutional neural networks has a superior performance in extraction of vessel regions.
Abstract: Coronary artery disease (CAD) is the most common type of heart disease which is the leading cause of death all over the world. X-ray angiography is currently the gold standard imaging technique for CAD diagnosis. These images usually suffer from low quality and presence of noise. Therefore, vessel enhancement and vessel segmentation play important roles in CAD diagnosis. In this paper a deep learning approach using convolutional neural networks (CNN) is proposed for detecting vessel regions in angiography images. Initially, an input angiogram is preprocessed to enhance its contrast. Afterward, the image is evaluated using patches of pixels and the network determines the vessel and background regions. A set of 1,040,000 patches is used in order to train the deep CNN. Experimental results on angiography images of a dataset show that our proposed method has a superior performance in extraction of vessel regions.

76 citations

Journal ArticleDOI
TL;DR: A method for detecting vessel regions in angiography images is proposed which is based on deep learning approach using convolutional neural networks (CNN) and results show its superiority in extraction of vessels regions in comparison to state of the art methods.

71 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is found that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art.
Abstract: Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine.

1,491 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis, and provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

991 citations

Journal ArticleDOI
TL;DR: This Review describes different deep learning techniques and how they can be applied to extract biologically relevant information from large, complex genomic data sets.
Abstract: As a data-driven science, genomics largely utilizes machine learning to capture dependencies in data and derive novel biological hypotheses. However, the ability to extract new insights from the exponentially increasing volume of genomics data requires more expressive machine learning models. By effectively leveraging large data sets, deep learning has transformed fields such as computer vision and natural language processing. Now, it is becoming the method of choice for many genomics modelling tasks, including predicting the impact of genetic variation on gene regulatory mechanisms such as DNA accessibility and splicing. This Review describes different deep learning techniques and how they can be applied to extract biologically relevant information from large, complex genomic data sets.

685 citations

Journal ArticleDOI
TL;DR: This paper indicates how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction, and provides a starting point for people interested in experimenting and contributing to the field of deep learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of deep learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

590 citations