scispace - formally typeset
Search or ask a question
Author

S. M. Riazul Islam

Bio: S. M. Riazul Islam is an academic researcher from Sejong University. The author has contributed to research in topics: Communication channel & Noma. The author has an hindex of 24, co-authored 125 publications receiving 5501 citations. Previous affiliations of S. M. Riazul Islam include University of Dhaka & Inha University.


Papers
More filters
Book ChapterDOI
12 Nov 2020
TL;DR: In this paper, a CNN-based model was proposed to recognize rice leaf diseases by reducing the network parameters, which achieved the best accuracy of 97.82% with an area under curve (AUC) of 0.99.
Abstract: The rice leaf suffers from several bacterial, viral, or fungal diseases and these diseases reduce rice production significantly. To sustain rice demand for a vast population globally, the recognition of rice leaf diseases is crucially important. However, recognition of rice leaf disease is limited to the image backgrounds and image capture conditions. The convolutional neural network (CNN) based model is a hot research topic in the field of rice leaf disease recognition. But the existing CNN-based models drop in recognition rates severely on independent dataset and are limited to the learning of large scale network parameters. In this paper, we propose a novel CNN-based model to recognize rice leaf diseases by reducing the network parameters. Using a novel dataset of 4199 rice leaf disease images, a number of CNN-based models are trained to identify five common rice leaf diseases. The proposed model achieves the highest training accuracy of 99.78% and validation accuracy of 97.35%. The effectiveness of the proposed model is evaluated on a set of independent rice leaf disease images with the best accuracy of 97.82% with an area under curve (AUC) of 0.99. Besides that, binary classification experiments have been carried out and our proposed model achieves recognition rates of 97%, 96%, 96%, 93%, and 95% for Blast, Brownspot, Bacterial Leaf Blight, Sheath Blight and Tungro, respectively. These results demonstrate the effectiveness and superiority of our approach in comparison to the state-of-the-art CNN-based rice leaf disease recognition models.

7 citations

Journal ArticleDOI
TL;DR: In this article, the authors define the concepts that help evaluate software-defined-based vehicular network systems in the literature based on their modeling and implementation schemes and provide a comparative analysis of existing SDN-based vehicle-to-vehicle network system grouped according to their modelling and simulation concepts.
Abstract: There is a strong devotion in the automotive industry to be part of a wider progression towards the Fifth Generation (5G) era. In-vehicle integration costs between cellular and vehicle-to-vehicle networks using Dedicated Short Range Communication could be avoided by adopting Cellular Vehicle-to-Everything (C-V2X) technology with the possibility to re-use the existing mobile network infrastructure. More and more, with the emergence of Software Defined Networks, the flexibility and the programmability of the network have not only impacted the design of new vehicular network architectures but also the implementation of V2X services in future intelligent transportation systems. In this paper, we define the concepts that help evaluate software-defined-based vehicular network systems in the literature based on their modeling and implementation schemes. We first overview the current studies available in the literature on C-V2X technology in support of V2X applications. We then present the different architectures and their underlying system models for LTE-V2X communications. We later describe the key ideas of software-defined networks and their concepts for V2X services. Lastly, we provide a comparative analysis of existing SDN-based vehicular network system grouped according to their modeling and simulation concepts. We provide a discussion and highlight vehicular ad-hoc networks' challenges handled by SDN-based vehicular networks.

7 citations

Journal ArticleDOI
TL;DR: In this paper, the secrecy transmission of uplink NOMA with single antenna and multi-antenna users in presence of an eavesdropper was studied and closed-form expressions for the secrecy outage probability and strictly positive secrecy capacity were derived to evaluate the system secure performance achieved by the proposed schemes.
Abstract: We study the secrecy transmission of uplink non-orthogonal multiple access (NOMA) with single antenna and multi-antenna users in presence of an eavesdropper. Two phases are required for communications during each time frame between the users and the base station in cellular networks. We study the case where an eavesdropper overhears the relay and direct links from the users to the base stations. In terms of the secure performance analysis, we focus on two main metrics including secrecy outage probability (SOP) and strictly positive secrecy capacity (SPSC) with the assumption that the eavesdropper is able to detect the signals. Analytical closed-form expressions for the SOP and SPSC are derived to evaluate the system secure performance achieved by the proposed schemes. Furthermore, the asymptotic analysis is presented to gain further insights. The analytical and numerical results indicate that the proposed schemes can realize better secrecy performance once we improve the channel condition and signal-to-noise ratio (SNR) at the base station. Our results confirms that the secrecy performance gaps exist among the two users since different power allocation factors are assigned to these users.

7 citations

Journal ArticleDOI
TL;DR: Link level simulation shows that the two-stage method with optimized windowing provides a good estimation performance close to that of the minimum-mean-square-estimation (MMSE) scheme with significant reduction in computational cost.
Abstract: We propose a two-stage channel estimation technique for high rate ultra-wideband communication system. In the preamble-stage, we perform initial channel estimation using least square approach followed by frequency-domain smoothing operation. Estimated channel at this stage is then windowed by a rectangular window of Hannan-Quinn criteria-optimized length. In the payload-stage, estimated channel from the previous stage is further refined by applying time- and frequency-redundancy in a decision-directed manner followed by smoothing and windowing. Link level simulation shows that the two-stage method with optimized windowing provides a good estimation performance close to that of the minimum-mean-square-estimation (MMSE) scheme with significant reduction in computational cost.

7 citations

Journal ArticleDOI
09 Dec 2020-Sensors
TL;DR: In this paper, a novel interference free dual-hop device-to-device (D2D) aided cooperative relaying strategy (CRS) based on spatial modulation (SM) (termed D2D-CRS-SM) is proposed and its efficiency is demonstrated via the Monte Carlo simulation.
Abstract: In this paper, a novel interference free dual-hop device-to-device (D2D) aided cooperative relaying strategy (CRS) based on spatial modulation (SM) (termed D2D-CRS-SM) is proposed. In D2D-CRS-SM, two cellular users (e.g., a near user (NU) and a relay-aided far user (FU)) and a pair of D2D transmitter (D1)-receivers (D2) are served in two time-slots. Two different scenarios are investigated considering information reception criteria at the NU. Irrespective of the scenarios, the base station (BS) exploits SM to map information bits into two sets: modulation bits and antenna index, in phase-1. In the first scenario, the BS maps FU information as the modulation bits and NU information as antenna index, whereas modulation bits correspond to NU information and the antenna index carries FU’s information in scenario-2. The iterative-maximum ratio combining (i-MRC) technique is then used by NU and D1 to de-map their desired information bits. During phase-2, D1 also exploits SM to forward FU’s information received from BS and its own information bits to the D2D receiver D2. Then, FU and D2 retrieve their desired information by using i-MRC. Due to exploiting SM in both phases, interference free information reception is possible at each receiving node without allocating any fixed transmit power. The performance of D2D-CRS-SM is studied in terms of bit-error rate and spectral efficiency considering M-ary phase shift keying and quadrature amplitude modulation. Finally, the efficiency of D2D-CRS-SM is demonstrated via the Monte Carlo simulation.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current state-of-art of WBANs is surveyed based on the latest standards and publications, and open issues and challenges within each area are explored as a source of inspiration towards future developments inWBANs.
Abstract: Recent developments and technological advancements in wireless communication, MicroElectroMechanical Systems (MEMS) technology and integrated circuits has enabled low-power, intelligent, miniaturized, invasive/non-invasive micro and nano-technology sensor nodes strategically placed in or around the human body to be used in various applications, such as personal health monitoring. This exciting new area of research is called Wireless Body Area Networks (WBANs) and leverages the emerging IEEE 802.15.6 and IEEE 802.15.4j standards, specifically standardized for medical WBANs. The aim of WBANs is to simplify and improve speed, accuracy, and reliability of communication of sensors/actuators within, on, and in the immediate proximity of a human body. The vast scope of challenges associated with WBANs has led to numerous publications. In this paper, we survey the current state-of-art of WBANs based on the latest standards and publications. Open issues and challenges within each area are also explored as a source of inspiration towards future developments in WBANs.

1,359 citations

Journal ArticleDOI
01 Dec 2017
TL;DR: This work provides a comprehensive overview of the state of the art in power-domain multiplexing-aided NOMA, with a focus on the theoretical N OMA principles, multiple-antenna- aided NomA design, and on the interplay between NOMa and cooperative transmission.
Abstract: Driven by the rapid escalation of the wireless capacity requirements imposed by advanced multimedia applications (e.g., ultrahigh-definition video, virtual reality, etc.), as well as the dramatically increasing demand for user access required for the Internet of Things (IoT), the fifth-generation (5G) networks face challenges in terms of supporting large-scale heterogeneous data traffic. Nonorthogonal multiple access (NOMA), which has been recently proposed for the third-generation partnership projects long-term evolution advanced (3GPP-LTE-A), constitutes a promising technology of addressing the aforementioned challenges in 5G networks by accommodating several users within the same orthogonal resource block. By doing so, significant bandwidth efficiency enhancement can be attained over conventional orthogonal multiple-access (OMA) techniques. This motivated numerous researchers to dedicate substantial research contributions to this field. In this context, we provide a comprehensive overview of the state of the art in power-domain multiplexing-aided NOMA, with a focus on the theoretical NOMA principles, multiple-antenna-aided NOMA design, on the interplay between NOMA and cooperative transmission, on the resource control of NOMA, on the coexistence of NOMA with other emerging potential 5G techniques and on the comparison with other NOMA variants. We highlight the main advantages of power-domain multiplexing NOMA compared to other existing NOMA techniques. We summarize the challenges of existing research contributions of NOMA and provide potential solutions. Finally, we offer some design guidelines for NOMA systems and identify promising research opportunities for the future.

1,008 citations

Journal ArticleDOI
05 Dec 1980-JAMA
TL;DR: This third edition of what has now become a well-established textbook in cardiovascular medicine is again edited by Dr Eugene Braunwald with the assistance of 65 other authors who read like a Who's Who of American Cardiology.
Abstract: This third edition of what has now become a well-established textbook in cardiovascular medicine is again edited by Dr Eugene Braunwald with the assistance of 65 other authors who read like a Who's Who of American Cardiology. Since the second edition, 12 new chapters have been added or substituted and others have been significantly revised. The first volume includes Part I on "Examination of the Patient" and Part II on "Normal and Abnormal Circulatory Function." The second volume deals with specific diseases. Part III, "Diseases of the Heart, Pericardium and Vascular System," includes new sections on "Risk Factors for Coronary Artery Disease," "The Pathogenesis of Atherosclerosis," and "Interventional Catheterization Techniques." Part IV, "Broader Perspectives on Heart Disease and Cardiologic Practice," includes new chapters on "Genetics and Cardiovascular Disease," "Aging in Cardiac Disease," and "Cost Effective Strategies in Cardiology." The last 200 pages of the book (Part V) are devoted to

927 citations