scispace - formally typeset
Search or ask a question
Author

S. Majumder

Bio: S. Majumder is an academic researcher from Kalyani Government Engineering College. The author has contributed to research in topics: Nonpoint source pollution & Particulates. The author has an hindex of 2, co-authored 3 publications receiving 86 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it has been proposed that reduction in levels of air pollution may result in lessening of the global burden of disease, which is a major environmental risk as far as public health is concerned.
Abstract: Air pollution has become a major environmental risk as far as public health is concerned. It has been proposed that reduction in levels of air pollution may result in lessening of the global burden of disease. Monitoring and management of air pollution has been carried out for a long time. However, the causes of air pollution and effects of air pollution on humans, animals, and plants are yet to be fully unraveled. Moreover, management of air pollution is facing challenges due to lack of availability of suitable tools and techniques. The latter half of the 19th century was dominated by research on the recognition and description of different pollutants and to some extent toward the search for tools and techniques to control and reduce air pollution. One of the major air pollutants is atmospheric particulate matter. Resuspended roadside dust is one of the sources of these particulate matters. Resuspended dust is composed of several elements from different sources. The elemental composition of these dust pa...

66 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the contribution of surface morphology towards plant's ability to function as dust particulate adsorber and distribution of trace elements over the leaves of Ficus benghalensis and Polyalthia longifolia.
Abstract: Urban and peri-urban vegetation is being considered for air pollution abatement. Appropriate plants with efficiency to adsorb and absorb air-pollutants are the prerequisite for green space development. The contributions of surface morphology towards plant’s ability to function as dust particulate adsorber and distribution of trace elements over the leaves are investigated in the present study. Dust interception efficiency was estimated for two roadside plant species named Ficus benghalensis, and Polyalthia longifolia. Leaves of both the plants are capable of capturing dust in the range of 0.12 mg/cm2 to 1.89 mg/cm2 on either of the leaf surfaces. However, variation in dust capturing capacity between the plants was observed. Leaf surface characters such as roughness, length, frequency of trichomes and frequency of stomata played a significant role in capturing re-suspended dust. Frequency (2 to 4 per 0.0004 cm2) and length (152.5 to 92.1 cm) of trichome showed negative co-relation trend, where as frequency and size of stomata showed positive co-relation trend. Elemental analysis by Scanning Electron Microscope attached with Energy Dispersive X-Ray Spectrometer (SEMEDS) indicated the presence of elements such as Sodium (Na), Magnesium (Mg), Aluminium (Al), Silicon (Si), Chlorine (Cl), Pottasium (K), Calcium (Ca), Iron (Fe), Zinc (Zn) and Arsenic (As). The results support the fact that plant canopies can be used for mitigation and bio-monitoring of air pollution as well.

58 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The present review provides a recent update for development and applications of phytoremediation in different environments including air, water, and soil.

167 citations

Journal ArticleDOI
TL;DR: In this article, road and vehicle use in urban environments are key contributors to urban air pollution and increase concentrations of carbon monoxide, polyaromatic hydrocarbons and particulate matter (particles).

154 citations

Journal ArticleDOI
TL;DR: The formation of trichomes and the accumulation of phenolics are interrelated at the molecular level as discussed by the authors, which can be attributed to the excellent combination of suitable structural traits and chemical reinforcement in the form of phenolic compounds, primarily flavonoids.
Abstract: As superficial structures, non-glandular trichomes, protect plant organs against multiple biotic and abiotic stresses. The protective and defensive roles of these epidermal appendages are crucial to developing organs and can be attributed to the excellent combination of suitable structural traits and chemical reinforcement in the form of phenolic compounds, primarily flavonoids. Both the formation of trichomes and the accumulation of phenolics are interrelated at the molecular level. During the early stages of development, non-glandular trichomes show strong morphological similarities to glandular ones such as the balloon-like apical cells with numerous phenolics. At later developmental stages, and during secondary wall thickening, phenolics are transferred to the cell walls of the trichomes. Due to the diffuse deposition of phenolics in the cell walls, trichomes provide protection against UV-B radiation by behaving as optical filters, screening out wavelengths that could damage sensitive tissues. Protection from strong visible radiation is also afforded by increased surface light reflectance. Moreover, the mixtures of trichome phenolics represent a superficial chemical barrier that provides protection against biotic stress factors such as herbivores and pathogens. Although the cells of some trichomes die at maturity, they can modulate their quantitative and qualitative characteristics during development, depending on the prevailing conditions of the external biotic or abiotic environment. In fact, the structure and chemical constituents of trichomes may change due to the particular light regime, herbivore damage, wounding, water stress, salinity and the presence of heavy metals. Hence, trichomes represent dynamic protective structures that may greatly affect the outcome of many plant–environment interactions.

135 citations

Journal ArticleDOI
TL;DR: The phytoextraction efficiency of OPs can be improved through chemical, microbial, soil amending, and genetic approaches, which primarily target bioavailability, uptake, and sequestration of HMs.
Abstract: Accumulation of heavy metals (HMs) in soil, water and air is one of the major environmental concerns worldwide, which mainly occurs due to anthropogenic activities such as industrialization, urbanization, and mining. Conventional remediation strategies involving physical or chemical techniques are not cost-effective and/or eco-friendly, reinforcing the necessity for development of novel approaches. Phytoextraction has attracted considerable attention over the past decades and generally refers to use of plants for cleaning up environmental pollutants such as HMs. Compared to other plant types such as edible crops and medicinal plants, ornamental plants (OPs) seem to be a more viable option as they offer several advantages including cleaning up the HMs pollution, beautification of the environment, by-product generation and related economic benefits, and not generally being involved in the food/feed chain or other direct human applications. Phytoextraction ability of OPs involve diverse detoxification pathways such as enzymatic and non-enzymatic (secondary metabolites) antioxidative responses, distribution and deposition of HMs in the cell walls, vacuoles and metabolically inactive tissues, and chelation of HMs by a ligand such as phytochelatins followed by the sequestration of the metal-ligand complex into the vacuoles. The phytoextraction efficiency of OPs can be improved through chemical, microbial, soil amending, and genetic approaches, which primarily target bioavailability, uptake, and sequestration of HMs. In this review, we explore the phytoextraction potential of OPs for remediation of HMs-polluted environments, underpinning mechanisms, efficiency improvement strategies, and highlight the potential future research directions.

122 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the inter-species variation of particulate capture by leaves of seventeen plant species present in a living wall at New Street railway station, Birmingham, UK.

116 citations