scispace - formally typeset
Search or ask a question
Author

S. Manikandan

Bio: S. Manikandan is an academic researcher from National Engineering College. The author has contributed to research in topics: Crossover & Image segmentation. The author has an hindex of 1, co-authored 1 publications receiving 108 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results reveal that the performance of real coded genetic algorithm with SBX crossover based optimal multilevel thresholding for medical image is better and has consistent performance than already reported methods.

130 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results based on Kapur's entropy reveal that CS, ELR-CS and WDO method can be accurately and efficiently used in multilevel thresholding problem.
Abstract: The objective of image segmentation is to extract meaningful objects. A meaningful segmentation selects the proper threshold values to optimize a criterion using entropy. The conventional multilevel thresholding methods are efficient for bi-level thresholding. However, they are computationally expensive when extended to multilevel thresholding since they exhaustively search the optimal thresholds to optimize the objective functions. To overcome this problem, two successful swarm-intelligence-based global optimization algorithms, cuckoo search (CS) algorithm and wind driven optimization (WDO) for multilevel thresholding using Kapur's entropy has been employed. For this purpose, best solution as fitness function is achieved through CS and WDO algorithm using Kapur's entropy for optimal multilevel thresholding. A new approach of CS and WDO algorithm is used for selection of optimal threshold value. This algorithm is used to obtain the best solution or best fitness value from the initial random threshold values, and to evaluate the quality of a solution, correlation function is used. Experimental results have been examined on standard set of satellite images using various numbers of thresholds. The results based on Kapur's entropy reveal that CS, ELR-CS and WDO method can be accurately and efficiently used in multilevel thresholding problem.

392 citations

Journal ArticleDOI
TL;DR: A new technique for color image segmentation using CS algorithm supported by Tsallis entropy for multilevel thresholding has been proposed toward the effective colored segmentation of satellite images and qualitative and quantitative results demonstrate that the proposed method selects the threshold values effectively and properly.
Abstract: Cuckoo search based multi-level thresholding is presented by maximizing the Tsallis entropy.Different optimization algorithms are exploited with Tsallis entropy method.Cuckoo based Tsallis entropy was found to be more accurate for colored satellite image segmentation.The feasibility of the proposed approach has been tested on 10 different colored satellite images. In this paper, a new technique for color image segmentation using CS algorithm supported by Tsallis entropy for multilevel thresholding has been proposed toward the effective colored segmentation of satellite images. The nonextensive entropy is a new expansion in statistical mechanics, and it is a recent formalism in which a real quantity q was introduced as parameter for physical systems that presents the long range interactions, long time memories and fractal-type structures. The feasibility of the proposed cuckoo search and Tsallis entropy based approach was tested on 10 different satellite images and benchmarked with differential evolution, wind driven optimization, particle swarm optimization and artificial bee colony algorithm for solving the multilevel colored image thresholding problems. Experiments have been conducted on a variety of satellite images. Several measurements are used to evaluate the performance of proposed method which clearly illustrates the effectiveness and robustness of the proposed algorithm. The experimental results qualitative and quantitative both demonstrate that the proposed method selects the threshold values effectively and properly.

164 citations

Journal ArticleDOI
01 Jan 2020
TL;DR: A new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mould algorithm (SMA) with the whale optimization algorithm to maximize the Kapur’s entropy.
Abstract: Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 - sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics.

156 citations

Journal ArticleDOI
TL;DR: A hybrid COVID-19 detection model based on an improved marine predators algorithm (IMPA) for X-Ray image segmentation is proposed and the ranking-based diversity reduction (RDR) strategy is used to enhance the performance of the IMPA to reach better solutions in fewer iterations.
Abstract: Many countries are challenged by the medical resources required for COVID-19 detection which necessitates the development of a low-cost, rapid tool to detect and diagnose the virus effectively for a large numbers of tests. Although a chest X-Ray scan is a useful candidate tool the images generated by the scans must be analyzed accurately and quickly if large numbers of tests are to be processed. COVID-19 causes bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities, sometimes with a rounded morphology and a peripheral lung distribution. In this work, we aim to extract rapidly from chest X-Ray images the similar small regions that may contain the identifying features of COVID-19. This paper therefore proposes a hybrid COVID-19 detection model based on an improved marine predators algorithm (IMPA) for X-Ray image segmentation. The ranking-based diversity reduction (RDR) strategy is used to enhance the performance of the IMPA to reach better solutions in fewer iterations. RDR works on finding the particles that couldn't find better solutions within a consecutive number of iterations, and then moving those particles towards the best solutions so far. The performance of IMPA has been validated on nine chest X-Ray images with threshold levels between 10 and 100 and compared with five state-of-art algorithms: equilibrium optimizer (EO), whale optimization algorithm (WOA), sine cosine algorithm (SCA), Harris-hawks algorithm (HHA), and salp swarm algorithms (SSA). The experimental results demonstrate that the proposed hybrid model outperforms all other algorithms for a range of metrics. In addition, the performance of our proposed model was convergent on all numbers of thresholds level in the Structured Similarity Index Metric (SSIM) and Universal Quality Index (UQI) metrics.

142 citations

Journal ArticleDOI
TL;DR: An alternative hybrid algorithm for color image segmentation, the advantages of which lie in extracting the best features from the high performance of two algorithms and overcoming the limitations of each algorithm to some extent is proposed.
Abstract: Multilevel thresholding has got more attention in recent years with various successful applications. However, the implementation becomes more and more complex and time-consuming when the number of thresholds is high, and color images which contain more information are even worse. Therefore, this paper proposes an alternative hybrid algorithm for color image segmentation, the advantages of which lie in extracting the best features from the high performance of two algorithms and overcoming the limitations of each algorithm to some extent. Two techniques, Otsu's method, and Kapur's entropy, are used as fitness function to determine the segmentation threshold values. Harris hawks optimization (HHO) is a novel and general-purpose algorithm, and the hybridization of HHO is fulfilled by adding another powerful algorithm-differential evolution (DE), which is known as HHO-DE. More specifically, the whole population is divided into two equal subpopulations which will be assigned to HHO and DE algorithms, respectively. Then both algorithms operate in parallel to update the positions of each subpopulation during the iterative process. In order to fully demonstrate the superior performance of HHO-DE, the proposed method is compared with the seven state-of-the-art algorithms by an array of experiments on ten benchmark images. Meanwhile, five measures, including the average fitness values, standard deviation (STD), peak signal to noise ratio (PSNR), structure similarity index (SSIM), and feature similarity index (FSIM), are used to evaluate the performance of each algorithm. In addition, Wilcoxon's rank sum test for statistical analysis and the comparison with the super-pixel method are also conducted to verify the superiority of HHO-DE. The experimental results reveal that the proposed method significantly outperforms other algorithms. Hence, the HHO-DE algorithm is a remarkable and promising tool for multilevel thresholding color image segmentation.

135 citations