scispace - formally typeset
Search or ask a question
Author

S. Muthu

Bio: S. Muthu is an academic researcher from Government Arts College, Coimbatore. The author has contributed to research in topics: Natural bond orbital & Molecule. The author has an hindex of 15, co-authored 92 publications receiving 722 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the molecular structure of the title compound has been investigated using experimental (FT-IR, FT-Raman and NMR) and theoretical (DFT) techniques.

73 citations

Journal ArticleDOI
TL;DR: The first hyperpolarizability which is an important parameter for future studies of nonlinear optics (NLO) was calculated to check the potential of the molecule to be an NLO material and a comparison of the physiochemical parameters of PIDAA and commercially available drugs was carried out.

68 citations

Journal ArticleDOI
TL;DR: In this article, the 2B3CP molecule with Adrenaline uptake inhibitor (PDB ID: 2AN5) protein act as neurotransmitter for Central nervous system (CNS) drug discovery.

63 citations

Journal ArticleDOI
TL;DR: In this paper, a quantum mechanical approach was carried out on the title compound to study the vibrational spectrum, the stability of the compound, the intermolecular and intramolecular interactions by using density functional theory (DFT) with B3LYP 6-311++G(d,p) basis set.

62 citations

Journal ArticleDOI
TL;DR: In this article, experimental and theoretical studies on the optimized geometrical structure, electronic and vibrational characteristics of (+)-(S)-2-(6-methoxynaphthalen-2-yl) propanoic acid are presented employing B3LYP/6-311++G (d,p) basis set.

61 citations


Cited by
More filters
01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal Article
TL;DR: The research expands the understanding of the nature of hydrogen bonding by delineating the interaction between hydrogen bonds and photons, thereby providing a basis for excited-state hydrogen bonding studies in photophysics, photochemistry, and photobiology.
Abstract: Because of its fundamental importance in many branches of science, hydrogen bonding is a subject of intense contemporary research interest. The physical and chemical properties of hydrogen bonds in the ground state have been widely studied both experimentally and theoretically by chemists, physicists, and biologists. However, hydrogen bonding in the electronic excited state, which plays an important role in many photophysical processes and photochemical reactions, has scarcely been investigated.Upon electronic excitation of hydrogen-bonded systems by light, the hydrogen donor and acceptor molecules must reorganize in the electronic excited state because of the significant charge distribution difference between the different electronic states. The electronic excited-state hydrogen-bonding dynamics, which are predominantly determined by the vibrational motions of the hydrogen donor and acceptor groups, generally occur on ultrafast time scales of hundreds of femtoseconds. As a result, state-of-the-art femtos...

886 citations

Journal ArticleDOI
TL;DR: In this article, Artificial Neural Networks and deep learning algorithms have been implemented in several drug discovery processes such as peptide synthesis, structure-based virtual screening, ligand-based screening, toxicity prediction, drug monitoring and release, pharmacophore modeling, quantitative structure-activity relationship, drug repositioning, polypharmacology, and physiochemical activity.
Abstract: Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. However, low efficacy, off-target delivery, time consumption, and high cost impose a hurdle and challenges that impact drug design and discovery. Further, complex and big data from genomics, proteomics, microarray data, and clinical trials also impose an obstacle in the drug discovery pipeline. Artificial intelligence and machine learning technology play a crucial role in drug discovery and development. In other words, artificial neural networks and deep learning algorithms have modernized the area. Machine learning and deep learning algorithms have been implemented in several drug discovery processes such as peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and release, pharmacophore modeling, quantitative structure-activity relationship, drug repositioning, polypharmacology, and physiochemical activity. Evidence from the past strengthens the implementation of artificial intelligence and deep learning in this field. Moreover, novel data mining, curation, and management techniques provided critical support to recently developed modeling algorithms. In summary, artificial intelligence and deep learning advancements provide an excellent opportunity for rational drug design and discovery process, which will eventually impact mankind. The primary concern associated with drug design and development is time consumption and production cost. Further, inefficiency, inaccurate target delivery, and inappropriate dosage are other hurdles that inhibit the process of drug delivery and development. With advancements in technology, computer-aided drug design integrating artificial intelligence algorithms can eliminate the challenges and hurdles of traditional drug design and development. Artificial intelligence is referred to as superset comprising machine learning, whereas machine learning comprises supervised learning, unsupervised learning, and reinforcement learning. Further, deep learning, a subset of machine learning, has been extensively implemented in drug design and development. The artificial neural network, deep neural network, support vector machines, classification and regression, generative adversarial networks, symbolic learning, and meta-learning are examples of the algorithms applied to the drug design and discovery process. Artificial intelligence has been applied to different areas of drug design and development process, such as from peptide synthesis to molecule design, virtual screening to molecular docking, quantitative structure-activity relationship to drug repositioning, protein misfolding to protein-protein interactions, and molecular pathway identification to polypharmacology. Artificial intelligence principles have been applied to the classification of active and inactive, monitoring drug release, pre-clinical and clinical development, primary and secondary drug screening, biomarker development, pharmaceutical manufacturing, bioactivity identification and physiochemical properties, prediction of toxicity, and identification of mode of action.

211 citations

Journal ArticleDOI
TL;DR: In this paper, the authors synthesized and characterized the (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide (15BHS) by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis.

127 citations

Journal ArticleDOI
TL;DR: Valacy Clovir is the l-valyl ester prodrug of the antiviral drug acyclovir that exhibits activity against Herpes simplex virus types and varicella zoster virus and antiviral activities of the title compound against various viral proteins were studied using molecular docking.

121 citations