Author
S Narayanan
Bio: S Narayanan is an academic researcher from Indian Institute of Technology Kanpur. The author has contributed to research in topics: Pressure drop & Phase portrait. The author has an hindex of 1, co-authored 1 publications receiving 25 citations.
Papers
More filters
TL;DR: In this paper, the authors study the phenomena of density wave oscillations (DWO) in a vertical heated channel and use the homogeneous equilibrium model to simulate the flow in the two-phase region.
Abstract: In this paper we study the phenomena of density wave oscillations (DWO) in a vertical heated channel. The homogeneous equilibrium model is used to simulate the flow in the two-phase region. The equations are solved numerically using a `shooting-method' technique. This in its turn employs an implicit backward finite difference scheme. The scheme can incorporate the movement of the interface. It is very elegant and does not involve storage of variables in large N×N matrices. This scheme is sufficiently general and can be used to simulate the dynamic behaviour when: (i) the heat flux imposed at the surface is non-constant, i.e. exhibits an axial variation; and (ii) the imposed pressure drop is varied periodically at a fixed frequency. A possible explanation for the conflicting reports of the effect of a periodic variation in heat flux is provided using a linear stability analysis and the D-partition method. The interaction of the natural frequency of the DWO and the fixed forcing frequency of the imposed pressure drop gives rise to various phenomena viz relaxation oscillations, sub-harmonic oscillations, quasi-periodic and chaotic solutions. To aid the experimentalist describe this infinite-dimensional system on the basis of his experimental results we discuss the characterisation using only the velocity time series data. This is done employing the method of delay coordinate embedding. The phase portraits, stroboscopic map and correlation dimension of the actual attractor are compared with that of the reconstructed attractor from the velocity time series.
25 citations
Cited by
More filters
TL;DR: An updated review of two-phase flow instabilities including experimental and analytical results regarding density-wave and pressure-drop oscillations, as well as Ledinegg excursions, is presented in this article.
Abstract: An updated review of two-phase flow instabilities including experimental and analytical results regarding density-wave and pressure-drop oscillations, as well as Ledinegg excursions, is presented. The latest findings about the main mechanisms involved in the occurrence of these phenomena are introduced. This work complements previous reviews, putting all two-phase flow instabilities in the same context and updating the information including coherently the data accumulated in recent years. The review is concluded with a discussion of the current research state and recommendations for future works.
292 citations
TL;DR: In this article, a transient thermal hydraulic model is developed with a characteristics-based implicit finite-difference scheme to solve the nonlinear mass, momentum and energy conservation equations in a time-domain.
Abstract: The objective of the paper is to analyze the thermally induced density wave oscillations in water cooled boiling water reactors A transient thermal hydraulic model is developed with a characteristics-based implicit finite-difference scheme to solve the nonlinear mass, momentum and energy conservation equations in a time-domain A two-phase flow was simulated with a one-dimensional homogeneous equilibrium model The model treats the boundary conditions naturally and takes into account the compressibility effect of the two-phase flow The axial variation of the heat flux profile can also be handled with the model Unlike the method of characteristics analysis, the present numerical model is computationally inexpensive in terms of time and works in a Eulerian coordinate system without the loss of accuracy The model was validated against available benchmarks The model was extended for the purpose of studying the flow-induced density wave oscillations in forced circulation and natural circulation boiling water reactors Various parametric studies were undertaken to evaluate the model's performance under different operating conditions Marginal stability boundaries were drawn for type-I and type-II instabilities in a dimensionless parameter space The significance of adiabatic riser sections in different boiling reactors was analyzed in detail The effect of the axial heat flux profile was also investigated for different boiling reactors
26 citations
TL;DR: In this paper, the authors analyze DWO in several boiling channels with varying lengths (Froude number) adopting moving node scheme and fixed node scheme (FNS) to evaluate the capability of the methods.
Abstract: The research on density wave oscillation (DWO) in boiling channels during the last few decades has been reviewed. Model reductions through lumped parameterization of the distributed channels have been exercised to compute nonlinear DWOs. In the present article, we attempt to analyze DWOs in several boiling channels with varying lengths (Froude number) adopting moving node scheme (MNS) and fixed node scheme (FNS). Relative performances of MNS and FNS have been analyzed to evaluate the capability of the methods. The analysis suggests that MNS is highly computationally efficient and has excellent convergence compared to FNS and finite difference method. Extended numerical oscillations have been observed in FNS. The analysis also suggests that DWOs are strongly coupled with the extent of inlet subcooling (boiling boundary), pressure drop and vapor quality. At high inlet subcooling, the ratio of time period to transit time is significantly higher than 2.0 (2.5–6.0) whereas at low inlet subcooling the ratio remains around 2.0.
Numerical experiments on long boiling channels (low Froude number) and short ones (high Froude number) derives a clear difference that the short channels with high Froude number has “islands of instability” in Npch–Nsub plane and undergoes both supercritical and subcritical bifurcations, whereas the boiling channel with low Froude number undergoes only supercritical bifurcations. The effect of node numbers on marginal stability boundary (MSB) has been discussed. Increased speed of convergence is observed with higher number of nodes. With finer nodalizations, the region of instability extends. Extensive validations of the nonlinear models with reference experimental data and numerical results confirm that MNS satisfactorily predicts MSB, supercritical and subcritical bifurcations. Quasi-periodic en route to chaos has been detected in the boiling channel as a result of periodic perturbation of pressure drop (Eu). The same has been confirmed by the analysis of power spectrum density (PSD) and computation of Lyapunov exponents.
22 citations
TL;DR: In this article, a nuclear coupled thermal-hydraulic model was developed to simulate core-wide and regional stability analysis in time domain within the limitation of desktop research facility for a boiling water reactor subjected to operational transients.
Abstract: The objective of the paper is to develop a nuclear coupled thermal-hydraulic model in order to simulate core-wide (in-phase) and regional (out-of-phase) stability analysis in time domain within the limitation of desktop research facility for a boiling water reactor subjected to operational transients. The integrated numerical tool, which is a combination of thermal-hydraulic, neutronic and fuel heat conduction models, is used to analyze a complete boiling water reactor core taking into account the strong nonlinear coupling between the core neutron dynamics and primary circuit thermal-hydraulics via the void-temperature reactivity feedback effects. The integrated model is validated against standard benchmark and published results. Finally, the model is used for various parametric studies and a number of numerical simulations are carried out to investigate core-wide and regional instabilities of the boiling water reactor core with and without the neutronic feedback effects. Results show that the inclusion of neutronic feedback effects has an adverse effect on boiling water reactor core by augmenting the instability at lower power for same inlet subcooling during core-wide mode of oscillations, whereas the instability is being suppressed during regional mode of oscillations in presence of the neutronic feedback. Dominance of core-wide instability over regional mode of oscillations is established for the present case of simulations which indicates that the preclusion of the former will automatically prevent the latter at the existing working condition.
19 citations
TL;DR: In this article, the period of density wave oscillations in an uniformly heated horizontal test section is experimentally investigated for a 5mm I.D. pipe where R134a is used as working fluid.
Abstract: The period of Density Wave Oscillations (DWOs) in an uniformly heated horizontal test section is experimentally investigated. The test section consists of a 5 mm I.D. pipe where R134a is used as working fluid. The experiment is performed for a range of inlet pressures P i [500–1200 kPa], inlet sub-cooling [10 and 20 K], maintaining constant heat fluxes q ″ [38 kW/m 2 ] and mass flux G [300 kg/m 2 s]. The effect of the system parameters on the period of the DWOs is studied. It is observed that the period of the DWOs increases as inlet pressure and inlet sub-cooling temperature increase. Furthermore it is observed changes in the period which might be connected to the changes in the flow regime distribution inside the pipe.
19 citations