scispace - formally typeset
Search or ask a question
Author

S. Oliffson Kamphorst

Bio: S. Oliffson Kamphorst is an academic researcher from University of Geneva. The author has contributed to research in topics: Dynamical systems theory & Series (mathematics). The author has an hindex of 3, co-authored 5 publications receiving 2629 citations.

Papers
More filters
Journal ArticleDOI
01 Nov 1987-EPL
TL;DR: In this article, a graphical tool for measuring the time constancy of dynamical systems is presented and illustrated with typical examples, and the tool can be used to measure the time complexity of a dynamical system.
Abstract: A new graphical tool for measuring the time constancy of dynamical systems is presented and illustrated with typical examples.

2,843 citations

Book ChapterDOI
01 Jan 1995
TL;DR: In this paper, a graphical tool for measuring the time constancy of dynamical systems is presented and illustrated with typical examples, and the tool can be used to measure the time complexity of a dynamical system.
Abstract: A new graphical tool for measuring the time constancy of dynamical systems is presented and illustrated with typical examples.

324 citations

Book ChapterDOI
01 Jan 1991
TL;DR: A tool is presented which allows for an efficient description of Banach spaces of analytic functions and an extended Pascal and its associated compiler understanding the usual operations on such spaces is generated.
Abstract: A tool is presented which allows for an efficient description of Banach spaces of analytic functions. Based on this description, an extended Pascal and its associated compiler understanding the usual operations on such spaces is generated. Furthermore, based on the mathematical context, the relevant subroutines needed to implement the function calls are produced.

6 citations

Journal ArticleDOI
TL;DR: A proof of the existence of a mixed ferromagnetic (or antiferromagnetic)-spin-glass fixed point for an Ising spin-glass model on the diamond hierarchical lattice is given in this paper.
Abstract: A proof of the existence of a mixed ferromagnetic (or antiferromagnetic)-spin-glass fixed point for an Ising spin-glass model on the diamond hierarchical lattice is given.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The aim of this work is to provide the readers with the know how for the application of recurrence plot based methods in their own field of research, and detail the analysis of data and indicate possible difficulties and pitfalls.

2,993 citations

Journal ArticleDOI
TL;DR: The various applications of HRV and different linear, frequency domain, wavelet domain, nonlinear techniques used for the analysis of the HRV are discussed.
Abstract: Heart rate variability (HRV) is a reliable reflection of the many physiological factors modulating the normal rhythm of the heart. In fact, they provide a powerful means of observing the interplay between the sympathetic and parasympathetic nervous systems. It shows that the structure generating the signal is not only simply linear, but also involves nonlinear contributions. Heart rate (HR) is a nonstationary signal; its variation may contain indicators of current disease, or warnings about impending cardiac diseases. The indicators may be present at all times or may occur at random-during certain intervals of the day. It is strenuous and time consuming to study and pinpoint abnormalities in voluminous data collected over several hours. Hence, HR variation analysis (instantaneous HR against time axis) has become a popular noninvasive tool for assessing the activities of the autonomic nervous system. Computer based analytical tools for in-depth study of data over daylong intervals can be very useful in diagnostics. Therefore, the HRV signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. In this paper, we have discussed the various applications of HRV and different linear, frequency domain, wavelet domain, nonlinear techniques used for the analysis of the HRV.

2,344 citations

Journal ArticleDOI
26 May 1999-Chaos
TL;DR: In this paper, the authors describe the implementation of methods of nonlinear time series analysis which are based on the paradigm of deterministic chaos and present a variety of algorithms for data representation, prediction, noise reduction, dimension and Lyapunov estimation.
Abstract: We describe the implementation of methods of nonlinear time series analysis which are based on the paradigm of deterministic chaos. A variety of algorithms for data representation, prediction, noise reduction, dimension and Lyapunov estimation, and nonlinearity testing are discussed with particular emphasis on issues of implementation and choice of parameters. Computer programs that implement the resulting strategies are publicly available as the TISEAN software package. The use of each algorithm will be illustrated with a typical application. As to the theoretical background, we will essentially give pointers to the literature. (c) 1999 American Institute of Physics.

1,381 citations

Journal ArticleDOI
TL;DR: A variety of algorithms for data representation, prediction, noise reduction, dimension and Lyapunov estimation, and nonlinearity testing are discussed with particular emphasis on issues of implementation and choice of parameters.
Abstract: Nonlinear time series analysis is becoming a more and more reliable tool for the study of complicated dynamics from measurements. The concept of low-dimensional chaos has proven to be fruitful in the understanding of many complex phenomena despite the fact that very few natural systems have actually been found to be low dimensional deterministic in the sense of the theory. In order to evaluate the long term usefulness of the nonlinear time series approach as inspired by chaos theory, it will be important that the corresponding methods become more widely accessible. This paper, while not a proper review on nonlinear time series analysis, tries to make a contribution to this process by describing the actual implementation of the algorithms, and their proper usage. Most of the methods require the choice of certain parameters for each specific time series application. We will try to give guidance in this respect. The scope and selection of topics in this article, as well as the implementational choices that have been made, correspond to the contents of the software package TISEAN which is publicly available from this http URL . In fact, this paper can be seen as an extended manual for the TISEAN programs. It fills the gap between the technical documentation and the existing literature, providing the necessary entry points for a more thorough study of the theoretical background.

1,356 citations

Journal ArticleDOI
TL;DR: This paper illustrates how recurrence plots can take single physiological measurements, project them into multidimensional space by embedding procedures, and identify time correlations (recurrences) that are not apparent in the one-dimensional time series.
Abstract: Physiological systems are best characterized as complex dynamical processes that are continuously subjected to and updated by nonlinear feedforward and feedback inputs. System outputs usually exhibit wide varieties of behaviors due to dynamical interactions between system components, external noise perturbations, and physiological state changes. Complicated interactions occur at a variety of hierarchial levels and involve a number of interacting variables, many of which are unavailable for experimental measurement. In this paper we illustrate how recurrence plots can take single physiological measurements, project them into multidimensional space by embedding procedures, and identify time correlations (recurrences) that are not apparent in the one-dimensional time series. We extend the original description of recurrence plots by computing an array of specific recurrence variables that quantify the deterministic structure and complexity of the plot. We then demonstrate how physiological states can be assessed by making repeated recurrence plot calculations within a window sliding down any physiological dynamic. Unlike other predominant time series techniques, recurrence plot analyses are not limited by data stationarity and size constraints. Pertinent physiological examples from respiratory and skeletal motor systems illustrate the utility of recurrence plots in the diagnosis of nonlinear systems. The methodology is fully applicable to any rhythmical system, whether it be mechanical, electrical, neural, hormonal, chemical, or even spacial.

1,327 citations