scispace - formally typeset
Search or ask a question
Author

S. P. Jones

Bio: S. P. Jones is an academic researcher from CERN. The author has contributed to research in topics: Higgs boson & Large Hadron Collider. The author has an hindex of 16, co-authored 41 publications receiving 1851 citations. Previous affiliations of S. P. Jones include Max Planck Society & Durham University.

Papers
More filters
Posted ContentDOI
TL;DR: The most up-to-date predictions of Higgs cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects were presented by the LHC Higgs Cross Section Working Group in 2014-2016 as mentioned in this paper.
Abstract: This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. The second part discusses the recent progress in Higgs effective field theory predictions, followed by the third part on pseudo-observables, simplified template cross section and fiducial cross section measurements, which give the baseline framework for Higgs boson property measurements. The fourth part deals with the beyond the Standard Model predictions of various benchmark scenarios of Minimal Supersymmetric Standard Model, extended scalar sector, Next-to-Minimal Supersymmetric Standard Model and exotic Higgs boson decays. This report follows three previous working-group reports: Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002), Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002), and Handbook of LHC Higgs Cross Sections: 3. Higgs properties (CERN-2013-004). The current report serves as the baseline reference for Higgs physics in LHC Run 2 and beyond.

771 citations

DOI
Maria Cepeda1, Hua-Sheng Shao, G. Marchiori, Giuliano Panico  +371 moreInstitutions (2)
19 Feb 2019
TL;DR: The potential reach and opportunities in Higgs physics during the High Luminosity phase of the LHC were summarized in this paper, with an expected dataset of pp collisions at 14 TeV, corresponding to an integrated luminosity of 3~ab$^{-1}$.
Abstract: The discovery of the Higgs boson in 2012, by the ATLAS and CMS experiments, was a success achieved with only a percent of the entire dataset foreseen for the LHC. It opened a landscape of possibilities in the study of Higgs boson properties, Electroweak Symmetry breaking and the Standard Model in general, as well as new avenues in probing new physics beyond the Standard Model. Six years after the discovery, with a conspicuously larger dataset collected during LHC Run 2 at a 13 TeV centre-of-mass energy, the theory and experimental particle physics communities have started a meticulous exploration of the potential for precision measurements of its properties. This includes studies of Higgs boson production and decays processes, the search for rare decays and production modes, high energy observables, and searches for an extended electroweak symmetry breaking sector. This report summarises the potential reach and opportunities in Higgs physics during the High Luminosity phase of the LHC, with an expected dataset of pp collisions at 14 TeV, corresponding to an integrated luminosity of 3~ab$^{-1}$. These studies are performed in light of the most recent analyses from LHC collaborations and the latest theoretical developments. The potential of an LHC upgrade, colliding protons at a centre-of-mass energy of 27 TeV and producing a dataset corresponding to an integrated luminosity of 15~ab$^{-1}$, is also discussed.

340 citations

Posted Content
TL;DR: The potential reach and opportunities in Higgs physics during the High Luminosity phase of the LHC were summarized in this article, with an expected dataset of pp collisions at 14 TeV, corresponding to an integrated luminosity of 3 ab$^{-1}$.
Abstract: The discovery of the Higgs boson in 2012, by the ATLAS and CMS experiments, was a success achieved with only a percent of the entire dataset foreseen for the LHC. It opened a landscape of possibilities in the study of Higgs boson properties, Electroweak Symmetry breaking and the Standard Model in general, as well as new avenues in probing new physics beyond the Standard Model. Six years after the discovery, with a conspicuously larger dataset collected during LHC Run 2 at a 13 TeV centre-of-mass energy, the theory and experimental particle physics communities have started a meticulous exploration of the potential for precision measurements of its properties. This includes studies of Higgs boson production and decays processes, the search for rare decays and production modes, high energy observables, and searches for an extended electroweak symmetry breaking sector. This report summarises the potential reach and opportunities in Higgs physics during the High Luminosity phase of the LHC, with an expected dataset of pp collisions at 14 TeV, corresponding to an integrated luminosity of 3 ab$^{-1}$. These studies are performed in light of the most recent analyses from LHC collaborations and the latest theoretical developments. The potential of an LHC upgrade, colliding protons at a centre-of-mass energy of 27 TeV and producing a dataset corresponding to an integrated luminosity of 15 ab$^{-1}$, is also discussed.

182 citations

DOI
25 Oct 2016
TL;DR: The most up-to-date predictions of Higgs cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects were presented by the LHC Higgs Cross Section Working Group in the period 2014-2016 as mentioned in this paper.
Abstract: This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016 The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects The second part discusses the recent progress in Higgs effective field theory predictions, followed by the third part on pseudo-observables, simplified template cross section and fiducial cross section measurements, which give the baseline framework for Higgs boson property measurements The fourth part deals with the beyond the Standard Model predictions of various benchmark scenarios of Minimal Supersymmetric Standard Model, extended scalar sector, Next-to-Minimal Supersymmetric Standard Model and exotic Higgs boson decays This report follows three previous working-group reports: Handbook of LHC Higgs Cross Sections: 1 Inclusive Observables (CERN-2011-002), Handbook of LHC Higgs Cross Sections: 2 Differential Distributions (CERN-2012-002), and Handbook of LHC Higgs Cross Sections: 3 Higgs properties (CERN-2013-004) The current report serves as the baseline reference for Higgs physics in LHC Run 2 and beyond

166 citations

DOI
11 Feb 2019
TL;DR: In this article, the authors discuss the physics reach of the HL-LHC in the realm of strong and electroweak interactions and top quark physics, and provide a glimpse of the potential of a possible further upgrade of the LHC to a 27 TeV $pp$ collider, the High-Energy LHC (HE-LHCL), assumed to accumulate an integrated luminosity of 15 ab$^{-1}$.
Abstract: The successful operation of the Large Hadron Collider (LHC) and the excellent performance of the ATLAS, CMS, LHCb and ALICE detectors in Run-1 and Run-2 with $pp$ collisions at center-of-mass energies of 7, 8 and 13 TeV as well as the giant leap in precision calculations and modeling of fundamental interactions at hadron colliders have allowed an extraordinary breadth of physics studies including precision measurements of a variety physics processes. The LHC results have so far confirmed the validity of the Standard Model of particle physics up to unprecedented energy scales and with great precision in the sectors of strong and electroweak interactions as well as flavour physics, for instance in top quark physics. The upgrade of the LHC to a High Luminosity phase (HL-LHC) at 14 TeV center-of-mass energy with 3 ab$^{-1}$ of integrated luminosity will probe the Standard Model with even greater precision and will extend the sensitivity to possible anomalies in the Standard Model, thanks to a ten-fold larger data set, upgraded detectors and expected improvements in the theoretical understanding. This document summarises the physics reach of the HL-LHC in the realm of strong and electroweak interactions and top quark physics, and provides a glimpse of the potential of a possible further upgrade of the LHC to a 27 TeV $pp$ collider, the High-Energy LHC (HE-LHC), assumed to accumulate an integrated luminosity of 15 ab$^{-1}$.

136 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, the ATLAS experiment is described as installed in i ts experimental cavern at point 1 at CERN and a brief overview of the expec ted performance of the detector is given.
Abstract: This paper describes the ATLAS experiment as installed in i ts experimental cavern at point 1 at CERN. It also presents a brief overview of the expec ted performance of the detector.

2,798 citations

Journal ArticleDOI
TL;DR: In this article, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test is presented, which is based on LO, NLO and NNLO QCD theory and also includes electroweak corrections.
Abstract: We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different perturbative orders and using a variety of experimental datasets ranging from HERA-only up to a global set including the latest LHC results, all using precisely the same validated methodology. We explore some of the phenomenological implications of our results for the upcoming 13 TeV Run of the LHC, in particular for Higgs production cross-sections.

2,028 citations

Journal Article
TL;DR: In this article, the fundamental isomorphism theorem of π-algebras is proved and some algebraic properties of Hopf π algebbras are studied.
Abstract: This paper introduces five notions, including π-algebras, π-ideals, Hopf π-algebras, π-modules and Hopf π-modules, verifies the fundamental isomorphism theorem of π-algebras and studies some algebraic properties of Hopf π-algebras as well.

1,322 citations

Proceedings ArticleDOI
01 Jan 2007
TL;DR: In this paper, a preliminary set of updated NLO parton distributions and their uncertainties determined from CCFR and NuTeV dimuon cross sections are presented, along with additional jet data from HERA and the Tevatron.
Abstract: We present a preliminary set of updated NLO parton distributions. For the first time we have a quantitative extraction of the strange quark and antiquark distributions and their uncertainties determined from CCFR and NuTeV dimuon cross sections. Additional jet data from HERA and the Tevatron improve our gluon extraction. Lepton asymmetry data and neutrino structure functions improve the flavour separation, particularly constraining the down quark valence distribution.

1,288 citations