scispace - formally typeset
Search or ask a question
Author

S. Radhakrishnan

Bio: S. Radhakrishnan is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Evaporation & Particle image velocimetry. The author has an hindex of 2, co-authored 2 publications receiving 11 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the influence of the ambient gas on the evaporation induced flow around a droplet at atmospheric conditions was investigated, and it was shown that the evapse-induced flow in these gases for different liquids was measured using particle image velocimetry.
Abstract: It is known from recent studies that evaporation induces flow around a droplet at atmospheric conditions. This flow is visible even for slowly evaporating liquids like water. In the present study, we investigate the influence of the ambient gas on the evaporating droplet. We observe from the experiments that the rate of evaporation at atmospheric temperature and pressure decreases in a heavier ambient gas. The evaporation-induced flow in these gases for different liquids is measured using particle image velocimetry and found to be very different from each other. However, the width of the disturbed zone around the droplet is seen to be independent of the evaporating liquid and the size of the needle (for the range of needle diameters studied), and only depends on the ambient gas used.It is known from recent studies that evaporation induces flow around a droplet at atmospheric conditions. This flow is visible even for slowly evaporating liquids like water. In the present study, we investigate the influence of the ambient gas on the evaporating droplet. We observe from the experiments that the rate of evaporation at atmospheric temperature and pressure decreases in a heavier ambient gas. The evaporation-induced flow in these gases for different liquids is measured using particle image velocimetry and found to be very different from each other. However, the width of the disturbed zone around the droplet is seen to be independent of the evaporating liquid and the size of the needle (for the range of needle diameters studied), and only depends on the ambient gas used.

16 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of the suspender on the evaporation of droplets under quiescent atmospheric conditions was studied experimentally using pendant droplets of ethanol (volatile) and water (nonvolatile).

8 citations


Cited by
More filters
Journal ArticleDOI
Ki Hyun Lee1, Dong Jun Kang1, Wonsik Eom1, Hyeonhoo Lee1, Tae Hee Han1 
TL;DR: In this paper, a nanocapillary membrane containing both nanopores and nanochannels based on an assembly of holey graphene oxide (HGO) nanosheets was constructed to enable water molecules to permeate and simultaneously evaporate from the nanostructure.

23 citations

Journal ArticleDOI
TL;DR: In this article , a nanocapillary membrane containing both nanopores and nanochannels based on an assembly of holey graphene oxide (HGO) nanosheets was proposed to enable water molecules to permeate and simultaneously evaporate from the nanostructure.

19 citations

Journal ArticleDOI
TL;DR: In this article, the influence of the ambient gas on the evaporation induced flow around a droplet at atmospheric conditions was investigated, and it was shown that the evapse-induced flow in these gases for different liquids was measured using particle image velocimetry.
Abstract: It is known from recent studies that evaporation induces flow around a droplet at atmospheric conditions. This flow is visible even for slowly evaporating liquids like water. In the present study, we investigate the influence of the ambient gas on the evaporating droplet. We observe from the experiments that the rate of evaporation at atmospheric temperature and pressure decreases in a heavier ambient gas. The evaporation-induced flow in these gases for different liquids is measured using particle image velocimetry and found to be very different from each other. However, the width of the disturbed zone around the droplet is seen to be independent of the evaporating liquid and the size of the needle (for the range of needle diameters studied), and only depends on the ambient gas used.It is known from recent studies that evaporation induces flow around a droplet at atmospheric conditions. This flow is visible even for slowly evaporating liquids like water. In the present study, we investigate the influence of the ambient gas on the evaporating droplet. We observe from the experiments that the rate of evaporation at atmospheric temperature and pressure decreases in a heavier ambient gas. The evaporation-induced flow in these gases for different liquids is measured using particle image velocimetry and found to be very different from each other. However, the width of the disturbed zone around the droplet is seen to be independent of the evaporating liquid and the size of the needle (for the range of needle diameters studied), and only depends on the ambient gas used.

16 citations