scispace - formally typeset
Search or ask a question
Author

S. Roy

Bio: S. Roy is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Heat transfer & Nusselt number. The author has an hindex of 34, co-authored 130 publications receiving 3832 citations. Previous affiliations of S. Roy include Indian Institute of Science & Indian Institutes of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a numerical study to investigate the steady laminar natural convection flow in a square cavity with uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical walls has been performed.

297 citations

Journal ArticleDOI
TL;DR: In this paper, the Darcy-Forchheimer model is used to simulate the momentum transfer in the porous medium and numerical results are presented in terms of stream functions, temperature profiles and Nusselt numbers.

275 citations

Journal ArticleDOI
TL;DR: In this paper, a penalty finite element analysis with bi-quadratic rectangular elements is performed to investigate the influence of uniform and non-uniform heating of wall(s) on natural convection flows in a square cavity.

159 citations

Journal ArticleDOI
TL;DR: In this article, a penalty finite element analysis with bi-quadratic elements is performed to investigate the influence of uniform and non-uniform heating of bottom wall on mixed convection lid driven flows in a square cavity.

137 citations

Journal ArticleDOI
TL;DR: In this article, heat flow patterns in the presence of natural convection within trapezoidal enclosures have been analyzed with heatlines concept, and the unique solution of heatfunctions for situations in differential heating is a strong function of Dirichlet boundary condition which has been obtained from average Nusselt numbers for hot or cold regimes.

120 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Book ChapterDOI
01 Jan 1997
TL;DR: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems and discusses the main points in the application to electromagnetic design, including formulation and implementation.
Abstract: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems. Although we discuss the main points in the application of the finite element method to electromagnetic design, including formulation and implementation, those who seek deeper understanding of the finite element method should consult some of the works listed in the bibliography section.

1,820 citations

Journal ArticleDOI
TL;DR: Roughly one in six of Walsh's 281 publications are included, photographically reproduced, and reproduction is excellent except for one paper from 1918, which is an obituary.
Abstract: a 'sleeper', receiving only modest attention for 50 years before emerging as a cornerstone of communications engineering in more recent times. Roughly one in six of Walsh's 281 publications are included, photographically reproduced. Reproduction is excellent except for one paper from 1918. The book also reproduces three brief papers about Walsh and his work, by W. E. Sewell, D. V. Widder and Morris Marden. The first two were written for a special issue of the SIAM Journal celebrating Walsh's 70th birthday; the third is an obituary.

676 citations

Book ChapterDOI
28 Jan 2005
TL;DR: The Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K), thermal diffusivity: α, ≡ k/(ρ · Cp) (m /s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K).
Abstract: Geometry: shape, size, aspect ratio and orientation Flow Type: forced, natural, laminar, turbulent, internal, external Boundary: isothermal (Tw = constant) or isoflux (q̇w = constant) Fluid Type: viscous oil, water, gases or liquid metals Properties: all properties determined at film temperature Tf = (Tw + T∞)/2 Note: ρ and ν ∝ 1/Patm ⇒ see Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: μ, (N · s/m) kinematic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K) thermal diffusivity: α, ≡ k/(ρ · Cp) (m/s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K)

636 citations