scispace - formally typeset
Search or ask a question
Author

S S Davis

Bio: S S Davis is an academic researcher. The author has contributed to research in topics: Gastric emptying & Dosage form. The author has an hindex of 1, co-authored 1 publications receiving 823 citations.

Papers
More filters
Journal ArticleDOI
01 Aug 1986-Gut
TL;DR: The gastrointestinal transit of pharmaceutical dosage forms has been measured in 201 studies in normal subjects using gamma scintigraphy and has implications for the design of dosage forms for the sustained release of drugs in specific positions in the gastrointestinal tract.
Abstract: The gastrointestinal transit of pharmaceutical dosage forms has been measured in 201 studies in normal subjects using gamma scintigraphy. Solutions, small pellets, and single units (matrix tablets and osmotic pumps) were administered with different amounts of food in the stomach, ranging from fasted state to heavy breakfast. Gastric emptying was affected by the nature of the dosage form and the presence of food in the stomach. Solutions and pellets were emptied even when the stomach was in the digestive mode, while single units were retained for long periods of time, depending on the size of the meal. In contrast, measured intestinal transit times were independent of the dosage form and fed state. The small intestinal transit time of about three hours (mean +/- 1 h SEM) has implications for the design of dosage forms for the sustained release of drugs in specific positions in the gastrointestinal tract.

859 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A biopharmaceutics drug classification scheme for correlating in vitro drug product dissolution and in vivo bioavailability is proposed based on recognizing that drug dissolution and gastrointestinal permeability are the fundamental parameters controlling rate and extent of drug absorption.
Abstract: A biopharmaceutics drug classification scheme for correlating in vitro drug product dissolution and in vivo bioavailability is proposed based on recognizing that drug dissolution and gastrointestinal permeability are the fundamental parameters controlling rate and extent of drug absorption. This analysis uses a transport model and human permeability results for estimating in vivo drug absorption to illustrate the primary importance of solubility and permeability on drug absorption. The fundamental parameters which define oral drug absorption in humans resulting from this analysis are discussed and used as a basis for this classification scheme. These Biopharmaceutic Drug Classes are defined as: Case 1. High solubility-high permeability drugs, Case 2. Low solubility-high permeability drugs, Case 3. High solubility-low permeability drugs, and Case 4. Low solubility-low permeability drugs. Based on this classification scheme, suggestions are made for setting standards for in vitro drug dissolution testing methodology which will correlate with the in vivo process. This methodology must be based on the physiological and physical chemical properties controlling drug absorption. This analysis points out conditions under which no in vitro-in vivo correlation may be expected e.g. rapidly dissolving low permeability drugs. Furthermore, it is suggested for example that for very rapidly dissolving high solubility drugs, e.g. 85% dissolution in less than 15 minutes, a simple one point dissolution test, is all that may be needed to insure bioavailability. For slowly dissolving drugs a dissolution profile is required with multiple time points in systems which would include low pH, physiological pH, and surfactants and the in vitro conditions should mimic the in vivo processes. This classification scheme provides a basis for establishing in vitro-in vivo correlations and for estimating the absorption of drugs based on the fundamental dissolution and permeability properties of physiologic importance.

5,049 citations

Journal ArticleDOI
TL;DR: In addition to metabolic differences, the anatomical, physiological, and biochemical differences in the gastrointestinal (G.I.) tract of the human and common laboratory animals can cause significant variation in drug absorption from the oral route.
Abstract: In addition to metabolic differences, the anatomical, physiological, and biochemical differences in the gastrointestinal (GI) tract of the human and common laboratory animals can cause significant variation in drug absorption from the oral route Among the physiological factors, pH, bile, pancreatic juice, and mucus and fluid volume and content can modify dissolution rates, solubility, transit times, and membrane transport of drug molecules The microbial content of the GI tract can significantly affect the reductive metabolism and enterohepatic circulation of drugs and colonic delivery of formulations The transit time of dosage forms can be significantly different between species due to different dimensions and propulsive activities of the GI tract The lipid/protein composition of the enterocyte membrane along the GI tract can alter binding and passive, active, and carrier-mediated transport of drugs The location and number of Peyer's patches can also be important in the absorption of large molecules and particulate matter While small animals, rats, mice, guinea pigs, and rabbits, are most suitable for determining the mechanism of drug absorption and bioavailability values from powder or solution formulations, larger animals, dogs, pigs, and monkeys, are used to assess absorption from formulations The understanding of physiological, anatomical, and biochemical differences between the GI tracts of different animal species can lead to the selection of the correct animal model to mimic the bioavailability of compounds in the human This article reviews the anatomical, physiological, and biochemical differences between the GI tracts of humans and commonly used laboratory animals

1,195 citations

01 Jan 1995
TL;DR: In this article, anatomical, physiological, and biochemical differences in the gastrointestinal tract of the human and common laboratory animals can cause significant variation in drug absorption from the oral route, including metabolic differences.
Abstract: In addition to metabolic differences, the anatomical, physiological, and biochemical differences in the gastrointestinal (G.I.) tract of the human and common laboratory animals can cause significant variation in drug absorption from the oral route. Among the physiological factors, pH, bile, pancreatic juice, and mucus and fluid volume and content can modify dissolution rates, solubility, transit times, and membrane transport of drug molecules. The microbial content of the G.I. tract can significantly affect the reductive metabolism and enterohepatic circulation of drugs and colonic delivery of formulations. The transit time of dosage forms can be significantly different between species due to different dimensions and propulsive activities of the G.I. tract. The lipid/ protein composition of the enterocyte membrane along the G.I. tract can alter binding and passive, active, and carrier-mediated transport of drugs. The location and number of Peyer’s patches can also be important in the absorption of large molecules and particulate matter. While small animals, rats, mice, guinea pigs, and rabbits, are most suitable for determining the mechanism of drug absorption and bioavailability values from powder or solution formulations, larger animals, dogs, pigs, and monkeys, are used to assess absorption from formulations. The understanding of physiological, anatomical, and biochemical differences between the G.I. tracts of different animal species can lead to the selection of the correct animal model to mimic the bioavailability of compounds in the human. This article reviews the anatomical, physiological, and biochemical differences between the G.I. tracts of humans and commonly used laboratory animals.

1,151 citations

Journal ArticleDOI
TL;DR: The aims of this article are to clarify under which circumstances dissolution testing can be prognostic for in vivo performance, and to present physiological data relevant to the design of dissolution tests, particularly with respect to the composition, volume, flow rates and mixing patterns of the fluids in the gastrointestinal tract.
Abstract: Dissolution tests are used for many purposes in the pharmaceutical industry: in the development of new products, for quality control and, to assist with the determination of bioequivalence. Recent regulatory developments such as the Biopharmaceutics Classification Scheme have highlighted the importance of dissolution in the regulation of post-approval changes and introduced the possibility of substituting dissolution tests for clinical studies in some cases. Therefore, there is a need to develop dissolution tests that better predict the in vivo performance of drug products. This could be achieved if the conditions in the gastrointestinal tract were successfully reconstructed in vitro. The aims of this article are, first, to clarify under which circumstances dissolution testing can be prognostic for in vivo performance, and second, to present physiological data relevant to the design of dissolution tests, particularly with respect to the composition, volume, flow rates and mixing patterns of the fluids in the gastrointestinal tract. Finally, brief comments are made in regard to the composition of in vitro dissolution media as well as the hydrodynamics and duration of the test.

1,080 citations

Journal ArticleDOI
TL;DR: Case studies are presented in which postprandial changes in bioavailability are rationalized in terms of the sensitivity of the physicochemical properties of the administered drug to the altered GI environment.

616 citations