scispace - formally typeset
Search or ask a question
Author

S. S. Pande

Other affiliations: Indian Institutes of Technology
Bio: S. S. Pande is an academic researcher from Indian Institute of Technology Bombay. The author has contributed to research in topics: Machining & Bearing (mechanical). The author has an hindex of 18, co-authored 59 publications receiving 1392 citations. Previous affiliations of S. S. Pande include Indian Institutes of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed a thermo-physical model for die-sinking electric discharge machining (EDM) process using finite element method (FEM) to predict the shape of crater cavity and the material removal rate (MRR).

213 citations

Journal ArticleDOI
TL;DR: The developed system has been extensively tested with various industrial sheet metal parts and is found to be robust and consistent and linked to various downstream CAD/CAM applications like automated process planning, sheet metal tool design, refinement of FEM meshes and product redesign.
Abstract: This paper reports the design and implementation of a system for automatic recognition of features from freeform surface CAD models of sheet metal parts represented in STL format. The developed methodology has three major steps viz. STL model preprocessing, Region segmentation and automated Feature recognition. The input CAD model is preprocessed to get a healed and topology enriched STL model. A new hybrid region segmentation algorithm based on both edge- and region-based approaches has been developed to segment the preprocessed STL model into meaningful regions. Geometrical properties of facets, edges and vertices such as gauss and mean curvature at vertices, orientations of facet normals, shape structure of triangles, dihedral edge angle (angle between facets), etc. have been computed to identify and classify the regions. Feature on a freeform surface is defined as a set of connected meaningful regions having a particular geometry and topology which has some significance in design and manufacturing. Feature recognition rules have been formulated for recognizing a variety of protrusion and depression features such as holes, bends, darts, beads, louvres, dimples, dents, ridges/channels (blind and through) etc. occurring on automotive sheet metal panels. The developed system has been extensively tested with various industrial sheet metal parts and is found to be robust and consistent. The features data can be post processed and linked to various downstream CAD/CAM applications like automated process planning, sheet metal tool design, refinement of FEM meshes and product redesign.

176 citations

Journal ArticleDOI
01 Mar 2011
TL;DR: The proposed integrated (FEM-ANN-GA) approach was found efficient and robust as the suggested optimum process parameters were found to give the expected optimum performance of the EDM process.
Abstract: This paper reports an intelligent approach for process modeling and optimization of electric discharge machining (EDM). Physics based process modeling using finite element method (FEM) has been integrated with the soft computing techniques like artificial neural networks (ANN) and genetic algorithm (GA) to improve prediction accuracy of the model with less dependency on the experimental data. A two-dimensional axi-symmetric numerical (FEM) model of single spark EDM process has been developed based on more realistic assumptions such as Gaussian distribution of heat flux, time and energy dependent spark radius, etc. to predict the shape of crater, material removal rate (MRR) and tool wear rate (TWR). The model is validated using the reported analytical and experimental results. A comprehensive ANN based process model is proposed to establish relation between input process conditions (current, discharge voltage, duty cycle and discharge duration) and the process responses (crater size, MRR and TWR) .The ANN model was trained, tested and tuned by using the data generated from the numerical (FEM) model. It was found to accurately predict EDM process responses for chosen process conditions. The developed ANN process model was used in conjunction with the evolutionary non-dominated sorting genetic algorithm II (NSGA-II) to select optimal process parameters for roughing and finishing operations of EDM. Experimental studies were carried out to verify the process performance for the optimum machining conditions suggested by our approach. The proposed integrated (FEM-ANN-GA) approach was found efficient and robust as the suggested optimum process parameters were found to give the expected optimum performance of the EDM process.

126 citations

Journal ArticleDOI
TL;DR: In this article, the authors have developed a system for obtaining optimum orientation of a part for Rapid Prototyping (RP) process, where the objective criteria for optimization is considered to be a weighted average of the performance measures such as build time, part quality and the material used in the hollowed model.

119 citations

Journal ArticleDOI
TL;DR: In this article, an intelligent model for the electric discharge machining (EDM) process using finite element method (FEM) and artificial neural network (ANN) was developed based on more realistic assumptions such as Gaussian distribution of heat flux, time and energy-dependent spark radius, etc.
Abstract: This paper reports the development of an intelligent model for the electric discharge machining (EDM) process using finite-element method (FEM) and artificial neural network (ANN). A two-dimensional axisymmetric thermal (FEM) model of single-spark EDM process has been developed based on more realistic assumptions such as Gaussian distribution of heat flux, time- and energy-dependent spark radius, etc. to predict the shape of crater cavity, material removal rate, and tool wear rate. The model is validated using the reported analytical and experimental results. A neural-network-based process model is proposed to establish relation between input process conditions (discharge power, spark on time, and duty factor) and the process responses (crater geometry, material removal rate, and tool wear rate) for various work—tool work materials. The ANN model was trained, tested, and tuned using the data generated from the numerical (FEM) simulations. The ANN model was found to accurately predict EDM process responses for chosen process conditions. It can be used for the selection of optimum process conditions for EDM process.

102 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the developments of Industry 4.0 within the literature and review the associated research streams. And they assess the practical implications, conducting face-to-face interviews with managers from the industry as well as from the consulting business.
Abstract: The German manufacturing industry has to withstand an increasing global competition on product quality and production costs. As labor costs are high, several industries have suffered severely under the relocation of production facilities towards aspiring countries, which have managed to close the productivity and quality gap substantially. Established manufacturing companies have recognized that customers are not willing to pay large price premiums for incremental quality improvements. As a consequence, many companies from the German manufacturing industry adjust their production focusing on customized products and fast time to market. Leveraging the advantages of novel production strategies such as Agile Manufacturing and Mass Customization, manufacturing companies transform into integrated networks, in which companies unite their core competencies. Hereby, virtualization of the processand supply-chain ensures smooth inter-company operations providing real-time access to relevant product and production information for all participating entities. Boundaries of companies deteriorate, as autonomous systems exchange data, gained by embedded systems throughout the entire value chain. By including Cyber-PhysicalSystems, advanced communication between machines is tantamount to their dialogue with humans. The increasing utilization of information and communication technology allows digital engineering of products and production processes alike. Modular simulation and modeling techniques allow decentralized units to flexibly alter products and thereby enable rapid product innovation. The present article describes the developments of Industry 4.0 within the literature and reviews the associated research streams. Hereby, we analyze eight scientific journals with regards to the following research fields: Individualized production, end-to-end engineering in a virtual process chain and production networks. We employ cluster analysis to assign sub-topics into the respective research field. To assess the practical implications, we conducted face-to-face interviews with managers from the industry as well as from the consulting business using a structured interview guideline. The results reveal reasons for the adaption and refusal of Industry 4.0 practices from a managerial point of view. Our findings contribute to the upcoming research stream of Industry 4.0 and support decisionmakers to assess their need for transformation towards Industry 4.0 practices. Keywords—Industry 4.0., Mass Customization, Production networks, Virtual Process-Chain. Malte Brettel, chairholder, is with the Aachen University (RWTH), Kackertstraße 7, 52072 Aachen (e-mail: brettel@win.rwth-aachen.de). Niklas Friederichsen is with the Aachen University (RWTH), Kackertstraße 7, 52072 Aachen, (corresponding author; phone: +49/(0)241 80 99397; e-mail: friederichsen@win.rwth-aachen.de). Michael Keller and Marius Rosenberg are with the Aachen University (RWTH), Kackertstraße 7, 52072 Aachen (e-mail: keller@win.rwthaachen.de, rosenberg@win.rwth-aachen.de).

1,184 citations

Journal ArticleDOI
TL;DR: In the case of aircraft components, AM technology enables low-volume manufacturing, easy integration of design changes and, at least as importantly, piece part reductions to greatly simplify product assembly.
Abstract: The past few decades have seen substantial growth in Additive Manufacturing (AM) technologies. However, this growth has mainly been process-driven. The evolution of engineering design to take advantage of the possibilities afforded by AM and to manage the constraints associated with the technology has lagged behind. This paper presents the major opportunities, constraints, and economic considerations for Design for Additive Manufacturing. It explores issues related to design and redesign for direct and indirect AM production. It also highlights key industrial applications, outlines future challenges, and identifies promising directions for research and the exploitation of AM's full potential in industry.

1,132 citations

Book ChapterDOI
01 Nov 2015
TL;DR: In this article, the capabilities of additive manufacturing technologies provide an opportunity to rethink DFM to take advantage of the unique capabilities of these technologies, and several companies are now using AM technologies for production manufacturing.
Abstract: Design for manufacture and assembly (DFM) has typically meant that designers should tailor their designs to eliminate manufacturing difficulties and minimize manufacturing, assembly, and logistics costs. However, the capabilities of additive manufacturing technologies provide an opportunity to rethink DFM to take advantage of the unique capabilities of these technologies. As mentioned in Chap. 16, several companies are now using AM technologies for production manufacturing. For example, Siemens, Phonak, Widex, and the other hearing aid manufacturers use selective laser sintering and stereolithography machines to produce hearing aid shells; Align Technology uses stereolithography to fabricate molds for producing clear dental braces (“aligners”); and Boeing and its suppliers use polymer powder bed fusion (PBF) to produce ducts and similar parts for F-17 fighter jets. For hearing aids and dental aligners, AM machines enable manufacturing of tens to hundreds of thousands of parts, where each part is uniquely customized based upon person-specific geometric data. In the case of aircraft components, AM technology enables low-volume manufacturing, easy integration of design changes and, at least as importantly, piece part reductions to greatly simplify product assembly.

631 citations

Journal ArticleDOI
TL;DR: An extensive review covering the literature from 1997 to 2007 and several analyses on selected quality tasks are provided on DM applications in the manufacturing industry, including product/process quality description, predicting quality, classification of quality, and parameter optimisation.
Abstract: Many quality improvement (QI) programs including six sigma, design for six sigma, and kaizen require collection and analysis of data to solve quality problems. Due to advances in data collection systems and analysis tools, data mining (DM) has widely been applied for QI in manufacturing. Although a few review papers have recently been published to discuss DM applications in manufacturing, these only cover a small portion of the applications for specific QI problems (quality tasks). In this study, an extensive review covering the literature from 1997 to 2007 and several analyses on selected quality tasks are provided on DM applications in the manufacturing industry. The quality tasks considered are; product/process quality description, predicting quality, classification of quality, and parameter optimisation. The review provides a comprehensive analysis of the literature from various points of view: data handling practices, DM applications for each quality task and for each manufacturing industry, patterns in the use of DM methods, application results, and software used in the applications are analysed. Several summary tables and figures are also provided along with the discussion of the analyses and results. Finally, conclusions and future research directions are presented.

354 citations

Journal ArticleDOI
TL;DR: An up-to-date review of the CAPPResearch works, a critical analysis of journals that publish CAPP research works, and an understanding of the future direction in the field are provided.
Abstract: For the past three decades, computer-aided process planning (CAPP) has attracted a large amount of research interest. A huge volume of literature has been published on this subject. Today, CAPP research faces new challenges owing to the dynamic markets and business globalisation. Thus, there is an urgent need to ascertain the current status and identify future trends of CAPP. Covering articles published on the subjects of CAPP in the past 10 years or so, this article aims to provide an up-to-date review of the CAPP research works, a critical analysis of journals that publish CAPP research works, and an understanding of the future direction in the field. First, general information is provided on CAPP. The past reviews are summarised. Discussions about the recent CAPP research are presented in a number of categories, i.e. feature-based technologies, knowledge-based systems, artificial neural networks, genetic algorithms, fuzzy set theory and fuzzy logic, Petri nets, agent-based technology, Internet-based technology, STEP-compliant CAPP and other emerging technologies. Research on some specific aspects of CAPP is also provided. Discussions and analysis of the methods are then presented based on the data gathered from the Elsevier's Scopus abstract and citation database. The concepts of 'Subject Strength' of a journal and 'technology impact factor' are introduced and used for discussions based on the publication data. The former is used to gauge the level of focus of a journal on a particular research subject/domain, whereas the latter is used to assess the level of impact of a particular technology, in terms of citation counts. Finally, a discussion on the future development is presented.

304 citations