scispace - formally typeset
Search or ask a question
Author

S Schuffenhauer

Bio: S Schuffenhauer is an academic researcher from Loyola Marymount University. The author has contributed to research in topics: DiGeorge syndrome. The author has an hindex of 1, co-authored 1 publications receiving 1033 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The majority of patients were constitutionally small, with 36% of patients below the 3rd centile for either height or weight parameters, and the majority of surviving patients were developmentally normal or had only mild learning problems.
Abstract: We present clinical data on 558 patients with deletions within the DiGeorge syndrome critical region of chromosome 22q11. Twenty-eight percent of the cases where parents had been tested had inherited deletions, with a marked excess of maternally inherited deletions (maternal 61, paternal 18). Eight percent of the patients had died, over half of these within a month of birth and the majority within 6 months. All but one of the deaths were the result of congenital heart disease. Clinically significant immunological problems were very uncommon. Nine percent of patients had cleft palate and 32% had velopharyngeal insufficiency, 60% of patients were hypocalcaemic, 75% of patients had cardiac problems, and 36% of patients who had abdominal ultrasound had a renal abnormality. Sixty-two percent of surviving patients were developmentally normal or had only mild learning problems. The majority of patients were constitutionally small, with 36% of patients below the 3rd centile for either height or weight parameters.

1,087 citations


Cited by
More filters
Journal ArticleDOI
19 Nov 2015
TL;DR: The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease as mentioned in this paper.
Abstract: 22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population.

1,850 citations

Journal Article
TL;DR: 22q11.2 deletion syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far extending the original description of DiGeorge syndrome.

983 citations

Journal ArticleDOI
TL;DR: The high prevalence of schizophrenia in this group suggests that chromosome 22q11 might harbor a gene or genes relevant to the etiology of schizophrenic disease in the wider population.
Abstract: Background Velo-cardio-facial syndrome (VCFS), a syndrome characterized by an increased frequency of schizophrenia and bipolar disorder, is associated with small interstitial deletions of chromosome 22q11. Methods We evaluated 50 adults with VCFS using a structured clinical interview (Schedules for Clinical Assessment in Neuropsychiatry or Psychiatric Assessment Schedule for Adults With Developmental Disability if IQ DSM-IV diagnosis. The schizophrenia phenotype in individuals with VCFS and schizophrenia was compared with a matched series of individuals with schizophrenia and without VCFS (n=12). The King's Schizotypy Questionnaire was administered to individuals with VCFS (n=41), their first-degree relatives (n=68), and a series of unrelated normal controls (n=316). All individuals with VCFS deleted for the N25 probe (n=48) were genotyped for a genetic polymorphism in the COMT gene that results in variations in enzymatic activity. Results Fifteen individuals with VCFS (30%) had a psychotic disorder, with 24% (n=12) fulfilling DSM-IV criteria for schizophrenia. In addition, 6 (12%) had major depression without psychotic features. The individuals with schizophrenia had fewer negative symptoms and a relatively later age of onset compared with those with schizophrenia and without VCFS. We found no evidence that possession of the low-activity COMT allele was associated with schizophrenia in our sample of individuals with VCFS. Conclusions The high prevalence of schizophrenia in this group suggests that chromosome 22q11 might harbor a gene or genes relevant to the etiology of schizophrenia in the wider population.

936 citations

Journal ArticleDOI
23 Feb 2001-Cell
TL;DR: A major role is suggested for this gene in the molecular etiology of VCFS/DGS using a cre-loxP strategy to generate mice that are hemizygous for a 1.5-3.0 Mb deletion corresponding to that on 22q11.

907 citations

Journal ArticleDOI
TL;DR: It is anticipated that this summary will update a wide range of medical personnel about the genetic aspects of congenital heart disease and will encourage an interdisciplinary approach to the child and adult with congenitals heart disease.
Abstract: The intent of this review is to provide the clinician with a summary of what is currently known about the contribution of genetics to the origin of congenital heart disease. Techniques are discussed to evaluate children with heart disease for genetic alterations. Many of these techniques are now available on a clinical basis. Information on the genetic and clinical evaluation of children with cardiac disease is presented, and several tables have been constructed to aid the clinician in the assessment of children with different types of heart disease. Genetic algorithms for cardiac defects have been constructed and are available in an appendix. It is anticipated that this summary will update a wide range of medical personnel, including pediatric cardiologists and pediatricians, adult cardiologists, internists, obstetricians, nurses, and thoracic surgeons, about the genetic aspects of congenital heart disease and will encourage an interdisciplinary approach to the child and adult with congenital heart disease.

723 citations