scispace - formally typeset
Search or ask a question
Author

S Sundaresan

Bio: S Sundaresan is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Welding & Inconel. The author has an hindex of 1, co-authored 1 publications receiving 162 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the weld fusion zones and the interfaces with the base materials were characterised in detail using light and transmission electron microscopy, showing that the stainless steel weld metals solidified dendritically, while the 16-8-2 (16%Cr-8%Ni-2%Mo) weld metal showed a predominantly cellular substructure.
Abstract: For joining type 316LN austenitic stainless steel to modified 9Cr–1Mo steel for power plant application, a trimetallic configuration using an insert piece (such as alloy 800) of intermediate thermal coefficient of expansion (CTE) has been sometimes suggested for bridging the wide gap in CTE between the two steels. Two joints are thus involved and this paper is concerned with the weld between 316LN and alloy 800. These welds were produced using three types of filler materials: austenitic stainless steels corresponding to 316, 16Cr–8Ni–2Mo, and the nickel-base Inconel 182 1 . The weld fusion zones and the interfaces with the base materials were characterised in detail using light and transmission electron microscopy. The 316 and Inconel 182 weld metals solidified dendritically, while the 16–8–2 (16%Cr–8%Ni–2%Mo) weld metal showed a predominantly cellular substructure. The Inconel weld metal contained a large number of inclusions when deposited from flux-coated electrodes, but was relatively inclusion-free under inert gas-shielded welding. Long-term elevated-temperature aging of the weld metals resulted in embrittling sigma phase precipitation in the austenitic stainless steel weld metals, but the nickel-base welds showed no visible precipitation, demonstrating their superior metallurgical stability for high-temperature service.

186 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compared welding of AISI 310 austenitic stainless steel to Inconel 657 nickel-chromium superalloy and showed that Inconels A showed the least susceptibility to hot cracking.

223 citations

Journal ArticleDOI
TL;DR: In this article, a joint of dissimilar metals between 2205 duplex stainless steel and 16MnR low alloy high strength steel is welded by tungsten inert gas arc welding (GTAW) and shielded metal arc welding(SMAW) respectively.

145 citations

Journal ArticleDOI
TL;DR: In this paper, a dissimilar welding between Inconel 718 nickel-base superalloy and 310S austenitic stainless steel using gas tungsten arc welding process was performed to determine the relationship between the microstructure of the welds and the resultant mechanical and corrosion properties.

138 citations

Journal ArticleDOI
TL;DR: In this paper, microstructures of dissimilar metal welds composed of low alloy steel, Inconel 82/182 weld, and stainless steel were prepared by gas tungsten arc welding and shielded metal arc welding techniques.

135 citations

Journal ArticleDOI
TL;DR: P-GMAW as discussed by the authors uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability, which can reduce the weld service life in continuous mode gas metal arc welding.
Abstract: The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

105 citations