scispace - formally typeset
Search or ask a question
Author

S. Twomey

Bio: S. Twomey is an academic researcher from University of Arizona. The author has contributed to research in topics: Cloud albedo & Twomey effect. The author has an hindex of 13, co-authored 20 publications receiving 6154 citations. Previous affiliations of S. Twomey include Commonwealth Scientific and Industrial Research Organisation.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that pollution can increase the reflectance (albedo) of clouds; by increasing the absorption coefficient it acts to decrease the reflectances, and that the former effect (brightening of the clouds in reflection, hence climatically a cooling effect) dominates for thin to moderately thick clouds.
Abstract: By increasing droplet concentration and thereby the optical thickness of a cloud, pollution acts to increase the reflectance (albedo) of clouds; by increasing the absorption coefficient it acts to decrease the reflectance. Calculations suggest that the former effect (brightening of the clouds in reflection, hence climatically a cooling effect) dominates for thin to moderately thick clouds, whereas for sufficiently thick clouds the latter effect (climatically a warming effect) can become dominant.

2,933 citations

Journal ArticleDOI
S. Twomey1
TL;DR: In this paper, the albedo of a cloud is proportional to optical thickness for thin clouds, but changes more slowly with increasing thickness as the number of cloud nuclei is increased.

1,776 citations

Journal ArticleDOI
S. Twomey1
TL;DR: In this paper, the removal process of clouds is considered, which cloud physicists know to be influenced by the aerosol, since the latter primarily controls cloud droplet number and size.

602 citations

Journal ArticleDOI
01 Nov 1984-Tellus B
TL;DR: In this paper, the authors studied the effect of pollution on global climate and found that the climate effect is comparable to that of increased carbon dioxide, and acts in the opposite direction, in that increasing absorption also attends increasing pollution.
Abstract: Increased pollution leads to increasing particulate concentrations. Since some particles nucleatedrop formation, clouds will contain, with increasing pollution, more drops per unit volume, andhence will tend to be optically thicker and more reflecting. An opposite effect is also present, inthat increasing absorption also attends increasing pollution. Measurements suggest that theformer (brightening) effect is the dominant one for global climate and that the climatic effect isquite comparable to that of increased carbon dioxide, and acts in the opposite direction. DOI: 10.1111/j.1600-0889.1984.tb00254.x

584 citations

Journal ArticleDOI
TL;DR: The smoke from sugar cane fires was found to be a prolific source of cloud nuclei and to increase very greatly the number concentration of droplets in clouds formed well downwind from the fires.
Abstract: The smoke from sugar cane fires was found to be a prolific source of cloud nuclei and to increase very greatly the number concentration of droplets in clouds formed well downwind from the fires.

212 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a new approach to global sustainability in which they define planetary boundaries within which they expect that humanity can operate safely. But the proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development.
Abstract: Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m-2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km3 yr-1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.

4,771 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal ArticleDOI
22 Apr 1987-Nature
TL;DR: The major source of cloud-condensation nuclei (CCN) over the oceans appears to be dimethylsulphide, which is produced by planktonic algae in sea water and oxidizes in the atmosphere to form a sulphate aerosol as mentioned in this paper.
Abstract: The major source of cloud-condensation nuclei (CCN) over the oceans appears to be dimethylsulphide, which is produced by planktonic algae in sea water and oxidizes in the atmosphere to form a sulphate aerosol Because the reflectance (albedo) of clouds (and thus the Earth's radiation budget) is sensitive to CCN density, biological regulation of the climate is possible through the effects of temperature and sunlight on phytoplankton population and dimethylsulphide production. To counteract the warming due to doubling of atmospheric CO2, an approximate doubling of CCN would be needed.

3,783 citations

Journal ArticleDOI
15 Sep 1989-Science
TL;DR: Increases in aerosol concentrations over the oceans may increase the amount of low-level cloudiness through a reduction in drizzle—a process that regulates the liquid-water content and the energetics of shallow marine clouds—to contribute to a cooling of the earth's surface.
Abstract: Increases in aerosol concentrations over the oceans may increase the amount of low-level cloudiness through a reduction in drizzle—a process that regulates the liquid-water content and the energetics of shallow marine clouds. The resulting increase in the global albedo would be in addition to the increase due to enhancement in reflectivity associated with a decrease in droplet size and would contribute to a cooling of the earth9s surface.

3,562 citations