scispace - formally typeset
Search or ask a question
Author

S.V. Prabhu

Bio: S.V. Prabhu is an academic researcher from Indian Institute of Technology Bombay. The author has contributed to research in topics: Heat transfer & Nusselt number. The author has an hindex of 31, co-authored 168 publications receiving 3766 citations. Previous affiliations of S.V. Prabhu include Nokia & Indian Institutes of Technology.


Papers
More filters
Journal Article
TL;DR: In this article, the authors explored flow visualization experiments with various blunt shaped bluff bodies placed inside a circular pipe, which mainly comprise of modifications of trapezoidal cylinder, most widely used in practical applications, such as vortex flowmeters.
Abstract: The present study explores flow visualization experiments with various blunt shaped bluff bodies placed inside a circular pipe. The bodies mainly comprise of modifications of trapezoidal cylinder, most widely used in practical applications, such as vortex flowmeters. The present configuration possesses the feature of both internal and external flows with low aspect ratio. The vortex dynamics of bluff bodies in such configuration is seldom reported in the literature. Dye injection technique is employed to visualize the complex vortex formation mechanism behind the bluff bodies. The influence of orientation, slit and after body shape is studied in an attempt to obtain better understanding of the vortex formation mechanism. Various wake parameters like Strouhal number, vortex formation length and wake width are documented for these shapes. Vortex formation both with and without shear layer interaction is observed for most of the shapes. Keywords—Flow visualization, Reynolds number, Strouhal number, vortex, vortex formation length, wake width.

5 citations

Journal ArticleDOI
TL;DR: In this article, the problem of fluid flow and heat transfer inside twisted duct of square cross-section was studied for steady fully developed laminar flow and for uniform wall heat flux boundary conditions using commercially available software.
Abstract: The problem of fluid flow and heat transfer was studied for flow inside twisted duct of square cross-section. Three-dimensional numerical solutions were obtained for steady fully developed laminar flow and for uniform wall heat flux boundary conditions using commercially available software. Reynolds number range considered was 100–3000. Twist ratio used are 2.5, 5, 10 and 20. Fluids considered are in Prandtl number range of 0.7–20. Product of friction factor and Reynolds number is found to be a function of Reynolds number and maximum values are observed for a twist ratio of 2.5 and Reynolds number of 3000. Maximum Nusselt number is observed for the same values along with Prandtl number of 20. Correlations for friction factor and Nusselt number are developed involving swirl parameter. Local distribution of friction factor ratio and Nusselt number across a cross-section is presented. Based on constant pumping power criteria, enhancement factor is defined to compare twisted ducts with straight ducts. Selection of twisted square duct is presented in terms of enhancement factor. It is found that twisted duct performs well in the laminar region for range of parameters studied. Heat transfer enhancement for Reynolds number of 3000 and Prandtl number of 0.7 for twist ratio of 2.5, 5, 10, and 20 is 20%, 17.8%, 16.1% and 13.7%, respectively. The results are significant because it will contribute to development of energy efficient compact size heat exchangers.

5 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the two-phase pressure drop in helical coils and suggested that the influence of a helical coil is completely included in the single phase pressure drop correlation for helical coarsens.
Abstract: The objective of the present work is to study the two-phase pressure drop in helical coils. Literature on the two-phase pressure drop in a helical coil suggests the complexity in flow boiling inside a helical coil due to secondary flow. Most of correlations reported in the literature on the two-phase pressure drop in a helical coil are limited to a specific operating range. No general correlation is available for a helical coil which is applicable for all fluids. In the present study, an experimental databank collected containing a total of 832 data points includes the data from the present study and from the literature. The data includes diabatic pressure drop of two fluids namely water and R123. Data covers a range of parameters namely a mass flux of 120–2058 kg/m2 s, a heat flux of 18–2831 kW/m2, an exit quality of 0.03–1, a density ratio of 32–1404 and a coil to tube diameter ratio of 14–58. The databank is compared with eighteen empirical correlations which include well referred correlations of straight tubes and the available correlations of helical coils. The straight tube correlations are not working well for the present data set. The helical coil correlations work reasonably well for the present databank. A correlation is suggested to predict the two-phase pressure drop in helical coils. The present study suggests that the influence of a helical coil is completely included in the single phase pressure drop correlation for helical coils.

5 citations

Journal ArticleDOI
TL;DR: In this paper, a correlation using the experimental data is developed incorporating the fluid-to-fluid modeling parameters for the prediction of critical heat flux in horizontal channels under low-pressure, low-flow (LPLF) conditions.
Abstract: Experimental investigations on critical heat flux (CHF) are mostly on vertical channels involving high mass fluxes and high system pressures. Reported studies on CHF in horizontal flow channels under low-pressure, low-flow (LPLF) conditions are limited. Understanding CHF is essential in the design and operation of heat exchangers and heat-generating devices including fuel channels of nuclear reactors. The present work investigates CHF in horizontal tubes for low steady flow at atmospheric pressure conditions. Appearance of a “red hot” spot on the test section is considered to be the occurrence of critical heat flux condition in this study. Present data could not be predicted using the reported method of applying a correction factor for the vertical lookup table data. A correlation using the experimental data is developed incorporating the fluid-to-fluid modeling parameters for the prediction of CHF in horizontal channels under LPLF conditions. Numerical study using thermal hydraulic system code RELAP5 sug...

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a pressure-dependent permeability function, referred to as the APF, was proposed for ultra-tight porous media, where the matrix pore network is composed of nanometre-to-micrometre-size pores.
Abstract: We study the gas flow processes in ultra-tight porous media in which the matrix pore network is composed of nanometre- to micrometre-size pores. We formulate a pressure-dependent permeability function, referred to as the apparent permeability function (APF), assuming that Knudsen diffusion and slip flow (the Klinkenberg effect) are the main contributors to the overall flow in porous media. The APF predicts that in nanometre-size pores, gas permeability values are as much as 10 times greater than results obtained by continuum hydrodynamics predictions, and with increasing pore size (i.e. of the order of the micrometre), gas permeability converges to continuum hydrodynamics values. In addition, the APF predicts that an increase in the fractal dimension of the pore surface leads to a decrease in Knudsen diffusion. Using the homogenization method, a rigorous analysis is performed to examine whether the APF is preserved throughout the process of upscaling from local scale to large scale. We use the well-known pulse-decay experiment to estimate the main parameter of the APF, which is Darcy permeability. Our newly derived late-transient analytical solution and the late-transient numerical solution consistently match the pressure decay data and yield approximately the same estimated value for Darcy permeability at the typical core-sample initial pressure range and pressure difference. Other parameters of the APF may be determined from independent laboratory experiments; however, a pulse-decay experiment can be used to estimate the unknown parameters of the APF if multiple tests are performed and/or the parameters are strictly constrained by upper and lower bounds.

479 citations

Journal ArticleDOI
TL;DR: In this paper, the performance, blade design, control and manufacturing of horizontal axis and vertical axis wind turbines are reviewed based on experimental and numerical studies and lessons learnt from various studies/countries on actual installation of small wind turbines were presented.
Abstract: Meeting future world energy needs while addressing climatic changes has led to greater strain on conventional power sources. One of the viable sustainable energy sources is wind. But the installation large scale wind farms has a potential impact on the climatic conditions, hence a decentralized small scale wind turbines is a sustainable option. This paper presents review of on different types of small scale wind turbines i.e., horizontal axis and vertical axis wind turbines. The performance, blade design, control and manufacturing of horizontal axis wind turbines were reviewed. Vertical axis wind turbines were categorized based on experimental and numerical studies. Also, the positioning of wind turbines and aero-acoustic aspects were presented. Additionally, lessons learnt from various studies/countries on actual installation of small wind turbines were presented.

383 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review on the performance of Savonius wind turbines and present relevant information about their performance, bringing a discussion about the performance and benefits of using this type of turbines.
Abstract: This paper presents a review on the performance of Savonius wind turbines. This type of turbine is unusual and its application for obtaining useful energy from air stream is an alternative to the use of conventional wind turbines. Simple construction, high start up and full operation moment, wind acceptance from any direction, low noise and angular velocity in operation, reducing wear on moving parts, are some advantages of using this type of machine. Over the years, numerous adaptations for this device were proposed. The variety of possible configurations of the rotor is another advantage in using such machine. Each different arrangement of Savonius rotor affects its performance. Savonius rotor performance is affected by operational conditions, geometric and air flow parameters. The range of reported values for maximum averaged power coefficient includes values around 0.05–0.30 for most settings. Performance gains of up to 50% for tip speed ratio of maximum averaged power coefficient are also reported with the use of stators. Present article aims to gather relevant information about Savonius turbines, bringing a discussion about their performance. It is intended to provide useful knowledge for future studies.

337 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented dynamic behavior and simulation results in a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage.

300 citations

Journal ArticleDOI
TL;DR: In this article, the evolution of infrared (IR) thermography into a powerful optical tool that can be used in complex fluid flows to either evaluate wall convective heat fluxes or investigate the surface flow field behavior.
Abstract: This paper deals with the evolution of infrared (IR) thermography into a powerful optical tool that can be used in complex fluid flows to either evaluate wall convective heat fluxes or investigate the surface flow field behavior. Measurement of convective heat fluxes must be performed by means of a thermal sensor, where temperatures have to be measured with proper transducers. By correctly choosing the thermal sensor, IR thermography can be successfully exploited to resolve convective heat flux distributions with both steady and transient techniques. When comparing it to standard transducers, the IR camera appears very valuable because it is non-intrusive, it has a high sensitivity (down to 20 mK), it has a low response time (down to 20 μs), it is fully two dimensional (from 80 k up to 1 M pixels, at 50 Hz) and, therefore, it allows for better evaluation of errors due to tangential conduction within the sensor. This paper analyses the capability of IR thermography to perform convective heat transfer measurements and surface visualizations in complex fluid flows. In particular, it includes the following: the necessary radiation theory background, a review of the main IR camera features, a description of the pertinent heat flux sensors, an analysis of the IR image processing methods and a report on some applications to complex fluid flows, ranging from natural convection to hypersonic regime.

277 citations