scispace - formally typeset
Search or ask a question
Author

S.V. Prabhu

Bio: S.V. Prabhu is an academic researcher from Indian Institute of Technology Bombay. The author has contributed to research in topics: Heat transfer & Nusselt number. The author has an hindex of 31, co-authored 168 publications receiving 3766 citations. Previous affiliations of S.V. Prabhu include Nokia & Indian Institutes of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, heat transfer and friction factor characteristics of air flow in an annulus formed by an inner twisted square duct and an outer circular pipe are studied experimentally for Reynolds number range of 400-60,000.

57 citations

Journal ArticleDOI
TL;DR: In this article, the effect of interaction between two Savonius turbines arranged in line was examined. But the authors focused on the interaction among them to avoid the power loss due to negative interaction between turbines.
Abstract: Savonius turbine is simple in design and easy to fabricate at a lower cost. The drag is the basic driving force for Savonius turbine. Savonius turbines are mainly used for the small-scale electricity generation in remote areas. In real life, multiple Savonius turbines are to be arranged to form a farm to scale up the electricity generation. So, it is important to study the interaction among them to avoid the power loss due to negative interaction between turbines. The purpose of this investigation is to examine closely the effect of interaction between two Savonius turbines arranged in line. Experimental investigations are carried out to study the mutual interaction between turbines with water as the working medium at a Reynolds number of 1.2×105 based on the diameter of the turbine. Influence of separation gap between the two Savonius turbines is studied by varying the separation gap ratio (𝑋/𝑅) from 3 to 8. As the separation gap ratio increases from 3 to 8, becomes lesser the mutual interaction between the turbines. Results conclude that two turbines placed at a separation gap ratio of 8 performed independently without affecting the performance of each other.

52 citations

Journal ArticleDOI
TL;DR: In this paper, a series of pool fire experiments are carried out with four different fuels namely diesel, gasoline, hexane and kerosene for pool diameters of 0.10 m, 0.13 m and 0.20 m.
Abstract: Flame emissivity is an important parameter in the study of pool fires. A series of pool fire experiments are carried out with four different fuels namely diesel, gasoline, hexane and kerosene for pool diameters of 0.10 m, 0.13 m and 0.20 m. Flame emissivity at a height of 0.25 times the pool diameter from the base is measured by observing the flame with reference to a black body using infrared camera. Influence of pool diameter (0.3 m, 0.34 m, 0.5 m, 0.7 m and 1.0 m) on flame emissivity at a height of 0.25 times the pool diameter is studied with diesel as the fuel. Variation of flame emissivity with the height of the flame along the center of diesel pool fire is investigated for diameters of 0.3 m, 0.5 m, 0.7 m and 1.0 m. It is observed that the flame emissivity is less at the tip of the flame in comparison with that at the base of the pool fire. The measurement of flame emissivity by observing flame with reference to a black body using infrared camera is corroborated with the measurements conducted with reference to an electrically heated black body for diesel pool fires with diameters 0.3 m, 0.5 m and 0.7 m. Flame emissivity is also inferred from the mass burning rate measurements for diesel oil pool fires of 0.3 m, 0.5 m, 0.7 m and 1.0 m diameters. Flame emissivities are independent of the measurement method. Temperature and surface emissive power distributions of the diesel pool fires for diameters 0.3 m, 0.5 m, 0.7 m and 1.0 m are computed using infrared thermography.

49 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the local heat transfer distributions in a double wall ribbed square channel with 90° continuous, 90 ° saw tooth profiled and 60° V-broken ribs.

49 citations

Journal ArticleDOI
TL;DR: In this article, the experimental investigations are carried out to study the hydrodynamic performance of three bladed Darrieus turbine with NACA0015, NACA 0018 and NACA4415 blades for different solidities.

47 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a pressure-dependent permeability function, referred to as the APF, was proposed for ultra-tight porous media, where the matrix pore network is composed of nanometre-to-micrometre-size pores.
Abstract: We study the gas flow processes in ultra-tight porous media in which the matrix pore network is composed of nanometre- to micrometre-size pores. We formulate a pressure-dependent permeability function, referred to as the apparent permeability function (APF), assuming that Knudsen diffusion and slip flow (the Klinkenberg effect) are the main contributors to the overall flow in porous media. The APF predicts that in nanometre-size pores, gas permeability values are as much as 10 times greater than results obtained by continuum hydrodynamics predictions, and with increasing pore size (i.e. of the order of the micrometre), gas permeability converges to continuum hydrodynamics values. In addition, the APF predicts that an increase in the fractal dimension of the pore surface leads to a decrease in Knudsen diffusion. Using the homogenization method, a rigorous analysis is performed to examine whether the APF is preserved throughout the process of upscaling from local scale to large scale. We use the well-known pulse-decay experiment to estimate the main parameter of the APF, which is Darcy permeability. Our newly derived late-transient analytical solution and the late-transient numerical solution consistently match the pressure decay data and yield approximately the same estimated value for Darcy permeability at the typical core-sample initial pressure range and pressure difference. Other parameters of the APF may be determined from independent laboratory experiments; however, a pulse-decay experiment can be used to estimate the unknown parameters of the APF if multiple tests are performed and/or the parameters are strictly constrained by upper and lower bounds.

479 citations

Journal ArticleDOI
TL;DR: In this paper, the performance, blade design, control and manufacturing of horizontal axis and vertical axis wind turbines are reviewed based on experimental and numerical studies and lessons learnt from various studies/countries on actual installation of small wind turbines were presented.
Abstract: Meeting future world energy needs while addressing climatic changes has led to greater strain on conventional power sources. One of the viable sustainable energy sources is wind. But the installation large scale wind farms has a potential impact on the climatic conditions, hence a decentralized small scale wind turbines is a sustainable option. This paper presents review of on different types of small scale wind turbines i.e., horizontal axis and vertical axis wind turbines. The performance, blade design, control and manufacturing of horizontal axis wind turbines were reviewed. Vertical axis wind turbines were categorized based on experimental and numerical studies. Also, the positioning of wind turbines and aero-acoustic aspects were presented. Additionally, lessons learnt from various studies/countries on actual installation of small wind turbines were presented.

383 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review on the performance of Savonius wind turbines and present relevant information about their performance, bringing a discussion about the performance and benefits of using this type of turbines.
Abstract: This paper presents a review on the performance of Savonius wind turbines. This type of turbine is unusual and its application for obtaining useful energy from air stream is an alternative to the use of conventional wind turbines. Simple construction, high start up and full operation moment, wind acceptance from any direction, low noise and angular velocity in operation, reducing wear on moving parts, are some advantages of using this type of machine. Over the years, numerous adaptations for this device were proposed. The variety of possible configurations of the rotor is another advantage in using such machine. Each different arrangement of Savonius rotor affects its performance. Savonius rotor performance is affected by operational conditions, geometric and air flow parameters. The range of reported values for maximum averaged power coefficient includes values around 0.05–0.30 for most settings. Performance gains of up to 50% for tip speed ratio of maximum averaged power coefficient are also reported with the use of stators. Present article aims to gather relevant information about Savonius turbines, bringing a discussion about their performance. It is intended to provide useful knowledge for future studies.

337 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented dynamic behavior and simulation results in a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage.

300 citations

Journal ArticleDOI
TL;DR: In this article, the evolution of infrared (IR) thermography into a powerful optical tool that can be used in complex fluid flows to either evaluate wall convective heat fluxes or investigate the surface flow field behavior.
Abstract: This paper deals with the evolution of infrared (IR) thermography into a powerful optical tool that can be used in complex fluid flows to either evaluate wall convective heat fluxes or investigate the surface flow field behavior. Measurement of convective heat fluxes must be performed by means of a thermal sensor, where temperatures have to be measured with proper transducers. By correctly choosing the thermal sensor, IR thermography can be successfully exploited to resolve convective heat flux distributions with both steady and transient techniques. When comparing it to standard transducers, the IR camera appears very valuable because it is non-intrusive, it has a high sensitivity (down to 20 mK), it has a low response time (down to 20 μs), it is fully two dimensional (from 80 k up to 1 M pixels, at 50 Hz) and, therefore, it allows for better evaluation of errors due to tangential conduction within the sensor. This paper analyses the capability of IR thermography to perform convective heat transfer measurements and surface visualizations in complex fluid flows. In particular, it includes the following: the necessary radiation theory background, a review of the main IR camera features, a description of the pertinent heat flux sensors, an analysis of the IR image processing methods and a report on some applications to complex fluid flows, ranging from natural convection to hypersonic regime.

277 citations