scispace - formally typeset
Search or ask a question
Author

Sabina Luisa Campanelli

Other affiliations: Polytechnic University of Bari
Bio: Sabina Luisa Campanelli is an academic researcher from Instituto Politécnico Nacional. The author has contributed to research in topics: Laser power scaling & Selective laser melting. The author has an hindex of 19, co-authored 52 publications receiving 1443 citations. Previous affiliations of Sabina Luisa Campanelli include Polytechnic University of Bari.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors performed an experimental investigation and a successive statistical optimization of the parameters of the selective laser melting process of the 18Ni300 maraging steel and found that the best part properties were produced with the laser power bigger than 90 W and the velocity smaller than 220 mm/s.
Abstract: Selective Laser Melting (SLM) is an Additive Manufacturing process (AM) that built parts from powder using a layer-by-layer deposition technique. The control of the parameters that influence the melting and the amount of energy density involved in the process is paramount in order to get valuable parts. The objective of this paper is to perform an experimental investigation and a successive statistical optimization of the parameters of the selective laser melting process of the 18Ni300 maraging steel. The experimental investigation involved the study of the microstructure, the mechanical and surface properties of the laser maraging powder. The outcomes of experimental study demonstrated that the hardness, the mechanical strength and the surface roughness correlated positively to the part density. Parts with relative density higher than 99% had a very low porosity that presented closed and regular shaped pores. The statistical optimization determined that the best part properties were produced with the laser power bigger than 90 W and the velocity smaller than 220 mm/s.

317 citations

Journal ArticleDOI
TL;DR: In this article, the residual stresses in Selective Laser Milling (SLM) specimens manufactured from AISI Marage 300 steel were investigated using the strain gauge hole drilling method.
Abstract: Selective laser melting (SLM) is one of the most interesting technologies used in rapid prototyping processes because of the possibility of building complex three-dimensional metal parts of nearly full density and with mechanical properties similar to those obtained with conventional manufacturing processes. This goal can be achieved using high-power lasers and low values of scan velocity. These conditions, together with an appropriate scanning strategy, allow full melting of the powders used in the process to be obtained.The aim of this paper is to investigate the residual stresses in SLM specimens manufactured from AISI Marage 300 steel. First, the strain gauge hole drilling method is utilized to determine residual stress profiles in a set of test samples of different thicknesses, placed in different positions on the building platform. Statistical analyses are performed in order to study the relationships between sample position on the platform, the distance from the specimen surface, and maximum/minimu...

110 citations

Journal ArticleDOI
TL;DR: This paper investigates the fabrication of Selective Laser Melting titanium alloy Ti6Al4V micro-lattice structures for the production of lightweight components using the pillar textile unit cell as base lattice structure and alternative lattice topologies including reinforcing vertical bars are considered.
Abstract: The paper investigates the fabrication of Selective Laser Melting (SLM) titanium alloy Ti6Al4V micro-lattice structures for the production of lightweight components. Specifically, the pillar textile unit cell is used as base lattice structure and alternative lattice topologies including reinforcing vertical bars are also considered. Detailed characterizations of dimensional accuracy, surface roughness, and micro-hardness are performed. In addition, compression tests are carried out in order to evaluate the mechanical strength and the energy absorbed per unit mass of the lattice truss specimens made by SLM. The built structures have a relative density ranging between 0.2234 and 0.5822. An optimization procedure is implemented via the method of Taguchi to identify the optimal geometric configuration which maximizes peak strength and energy absorbed per unit mass.

108 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluate the influence of the process parameters on the temperature evolution in a 3D model and simulate the powder-liquid-solid change by means of a check of the nodes temperature.
Abstract: Selective Laser Melting (SLM) is actually the most attractive technique in an Additive Manufacturing (AM) technology because of the possibility to build layer by layer up nearly full density metallic components without needing for post-processing. One of the main problems in SLM processes is represented by the thermal distortion of the model during forming; the part tends to be deformed and cracked due to the thermal stress. Therefore, it is important to know the effect of the process parameters on the molten zone and consequently on the density of the consolidated material. Great advantage can be obtained from the prediction of temperature evolution and distribution. The aim of this study is to evaluate the influence of the process parameters on the temperature evolution in a 3D model. The developed code evaluates the distribution and evolution of the temperatures in the SLM process and simulates the powder-liquid-solid change by means of a check of the nodes temperature. (Received in June 2010, accepted in June 2011. This paper was with the authors 1 month for 1 revision.)

103 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a laser marker machine equipped with a pulsed Nd:YVO 4 laser having a wavelength of 1064nm to find out the parameters setting for manufacturing 3D structures with a good surface finishing through the laser milling technology.

95 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the complex relationship between additive manufacturing processes, microstructure and resulting properties for metals, and typical microstructures for additively manufactured steel, aluminium and titanium are presented.

2,837 citations

Journal ArticleDOI
TL;DR: Selective laser melting (SLM) is a particular rapid prototyping, 3D printing, or additive manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders as mentioned in this paper.
Abstract: Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following a...

1,455 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of selective laser melting (SLM) process parameters (laser power, scan speed, scan spacing, and island size) on the porosity development in AlSi10Mg alloy builds has been investigated, using statistical design of experimental approach, correlated with the energy density model.

854 citations