scispace - formally typeset
Search or ask a question
Author

Sabine Taussac

Bio: Sabine Taussac is an academic researcher from Aix-Marseille University. The author has contributed to research in topics: Pycnoporus & Fungal genetics. The author has an hindex of 3, co-authored 4 publications receiving 110 citations. Previous affiliations of Sabine Taussac include Institut national de la recherche agronomique.

Papers
More filters
Journal ArticleDOI
TL;DR: The interest in a systematic high-throughput assessment of collected fungal biodiversity to improve the enzymatic conversion of lignocellulosic biomass enabled the unbiased identification of new fungal strains issued from biodiversity with high biotechnological potential.
Abstract: In this study, natural fungal diversity in wood-decaying species was explored for biomass deconstruction. In 2007 and 2008, fungal isolates were collected in temperate forests mainly from metropolitan France and in tropical forests mainly from French Guiana. We recovered and identified 74 monomorph cultures using morphological and molecular identification tools. Following production of fungal secretomes under inductive conditions, we evaluated the capacity of these fungal strains to potentiate a commercial Trichoderma reesei cellulase cocktail for the release of soluble sugars from biomass. The secretome of 19 isolates led to an improvement in biomass conversion of at least 23%. Of the isolates, the Trametes gibbosa BRFM 952 (Banque de Ressources Fongiques de Marseille) secretome performed best, with 60% improved conversion, a feature that was not universal to the Trametes and related genera. Enzymatic characterization of the T. gibbosa BRFM 952 secretome revealed an unexpected high activity on crystalline cellulose, higher than that of the T. reesei cellulase cocktail. This report highlights the interest in a systematic high-throughput assessment of collected fungal biodiversity to improve the enzymatic conversion of lignocellulosic biomass. It enabled the unbiased identification of new fungal strains issued from biodiversity with high biotechnological potential.

69 citations

Journal ArticleDOI
TL;DR: A phylogenetic analysis of Trametes and related taxa is proposed, based on a wide sampling of temperate and tropical species, with the introduction of a new genus: Leiotrametes Welti & Courtec.
Abstract: A phylogenetic analysis of Trametes and related taxa is proposed, based on a wide sampling of temperate and tropical species. Concatenate sequences of ribosomal DNA (ITS1-5.8S-ITS2) and RPB2 gene from mycelia cultures were analyzed by Maximum Likelihood and Bayesian methods, whilst morphological features were documented from the corresponding herbarium vouchers. Congruent results were obtained from analyses of ribosomal LSU sequences downloaded from Genbank. The Bayesian analysis of ITS + RPB2 sequences gave the best resolution for the phylogenetic reconstructions and revealed the existence of three main lineages in the Trametes-clade: 1) a monospecific lineage represented by Artolenzites elegans 2) a lineage including the genus Pycnoporus in its traditional sense and several species usually classified in the genus Trametes (T. cingulata, T. lactinea, T. ljubarskyi, T. menziesii) & 3) a lineage corresponding to the core genus Trametes, including type species of Trametes, Coriolopsis and Lenzites. The presence of a pseudostipe, aspect and structure of the abhymenial surface, colour change with 5% aqueous solutions of potassium hydroxide and topography of pigments on skeletal hyphae gave relevant morphological support to these clades. When the structure of the hymenial surface, presence of a black line below the tomentum and color of context (except for genus Pycnoporus) usually used in traditional polypore-classifications did not reveal any phylogenetic significance. A partial systematic arrangement of the Trametes clade is proposed, with the introduction of a new genus: Leiotrametes Welti & Courtec. gen. nov.. Two new combinations: Leiotrametes lactinea (Berk.) Welti & Courtec. comb. nov. and L. menziesii (Berk.) Welti & Courtec. comb. nov. are proposed.

31 citations

Journal ArticleDOI
TL;DR: Molecular clustering based on lac 3-1 sequences enabled the distribution of Pycnoporus sanguineus and PyCNoporus coccineus through four distinct, well supported clades and sub-clades, and highlighted enzyme functional diversity associated with biogeographical origin.
Abstract: The genus Pycnoporus forms a group of four species known especially for producing high redox potential laccases suitable for white biotechnology. A sample of 36 Pycnoporus strains originating from different geographical areas was studied to seek informative molecular markers for the typing of new strains in laboratory culture conditions and to analyse the phylogeographic relationships in this cosmopolitan group. ITS1-5.8S-ITS2 ribosomal DNA and partial regions of β-tubulin and laccase lac3-1 gene were sequenced. Phylogenetic trees inferred from these sequences clearly differentiated the group of Pycnoporus cinnabarinus strains from the group of Pycnoporus puniceus strains into strongly supported clades (100% bootstrap value). Molecular clustering based on lac 3-1 sequences enabled the distribution of Pycnoporus sanguineus and Pycnoporus coccineus through four distinct, well supported clades and sub-clades. A neotropical sub-clade, grouping the P. sanguineus strains from French Guiana and Venezuela, corresponded to P. sanguineus sensu stricto. A paleotropical sub-clade, clustering the strains from Madagascar, Vietnam and New Caledonia, was defined as Pycnoporus cf. sanguineus. The Australian clade corresponded to P. coccineus sensu stricto. The Eastern Asian region clade, clustering the strains from China and Japan, formed a P. coccineus-like group. Laccase gene (lac 3-1) analysis within the Pycnoporus species can highlight enzyme functional diversity associated with biogeographical origin.

19 citations

Journal ArticleDOI
15 Jul 2021
TL;DR: The first large-scale phenotyping of more than 1,000 fungal strains with evaluation of their growth and degradation potential towards five industrial, human-designed and recalcitrant compounds, including two synthetic dyes, two lignocellulose-derived compounds and a synthetic plastic polymer is reported.
Abstract: Fungal biotechnology is set to play a keystone role in the emerging bioeconomy, notably to address pollution issues arising from human activities. Because they preserve biological diversity, Biological Resource Centres are considered as critical infrastructures to support the development of biotechnological solutions. Here, we report the first large-scale phenotyping of more than 1,000 fungal strains with evaluation of their growth and degradation potential towards five industrial, human-designed and recalcitrant compounds, including two synthetic dyes, two lignocellulose-derived compounds and a synthetic plastic polymer. We draw a functional map over the phylogenetic diversity of Basidiomycota and Ascomycota , to guide the selection of fungal taxa to be tested for dedicated biotechnological applications. We evidence a functional diversity at all taxonomic ranks, including between strains of a same species. Beyond demonstrating the tremendous potential of filamentous fungi, our results pave the avenue for further functional exploration to solve the ever-growing issue of ecosystems pollution.

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This manuscript reviews fifty ways in which fungi can potentially be utilized as biotechnology and provides a flow chart that can be used to convince funding bodies of the importance of fungi for biotechnological research and as potential products.
Abstract: Fungi are an understudied, biotechnologically valuable group of organisms. Due to the immense range of habitats that fungi inhabit, and the consequent need to compete against a diverse array of other fungi, bacteria, and animals, fungi have developed numerous survival mechanisms. The unique attributes of fungi thus herald great promise for their application in biotechnology and industry. Moreover, fungi can be grown with relative ease, making production at scale viable. The search for fungal biodiversity, and the construction of a living fungi collection, both have incredible economic potential in locating organisms with novel industrial uses that will lead to novel products. This manuscript reviews fifty ways in which fungi can potentially be utilized as biotechnology. We provide notes and examples for each potential exploitation and give examples from our own work and the work of other notable researchers. We also provide a flow chart that can be used to convince funding bodies of the importance of fungi for biotechnological research and as potential products. Fungi have provided the world with penicillin, lovastatin, and other globally significant medicines, and they remain an untapped resource with enormous industrial potential.

404 citations

Journal ArticleDOI
TL;DR: A novel high fidelity primer pair for TEF1α has potential as a supplementary DNA barcode with superior resolution to ITS, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail.
Abstract: Primer development and testing by partners in the European Consortium of Microbial Resource Centres (EMbaRC) was supported through funding of the European Community’s Seventh Framework Programme (FP7, 2007–2013), Research Infrastructures action, under grant agreement no. FP7-228310. Part of sequencing work in CBS was supported by Fonds Economische Structuurversterking (FES), Dutch Ministry of Education, Culture and Science grant BEK/BPR-2009/137964-U). WM and VR were supported by research grant NH&MRC #APP1031952. Genome mining at CBS and AAFC, and primer development and testing at AAFC, were supported by grants from the A.P. Sloan Foundation Programme on the Microbiology of the Built Environment. We acknowledge the Deanship of Scientific Research (DSR), King Abdulaziz University, under grant No. 1-965/1434 HiCi for technical and financial support. AY was supported by Fundacao para a Ciencia e a Tecnologia (Portugal), project PTDC/BIA-BIC/4585/2012. MPM was supported by grant CGL2012-359 (Spain).

385 citations

Journal ArticleDOI
TL;DR: Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Abstract: The Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.

233 citations

Journal ArticleDOI
TL;DR: The progress made in fungal enzyme technology over the past few years is reviewed with major emphasis on the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products.

214 citations

Journal ArticleDOI
01 Nov 2014
TL;DR: This study screened 40 strains of Ascomycota and 26 strains of Basidiomycota, representing the distribution of fungal diversity of the CIRM-CF collection, in order to evaluate their potential for organic acid and ethanol production, and found that some of the studied strains have good predispositions to produce valuable molecules.
Abstract: Background: Filamentous fungi are well known for their ability to degrade lignocellulosic biomass and have a natural ability to convert certain products of biomass degradation, for example glucose, into various organic acids. Organic acids are suggested to give a competitive advantage to filamentous fungi over other organisms by decreasing the ambient pH. They also have an impact on the ecosystem by enhancing weathering and metal detoxification. Commercially, organic acids can be used as chemical intermediates or as synthons for the production of biodegradable polymers which could replace petroleum-based or synthetic chemicals. One of the advantages of filamentous fungi as biotechnological production platforms for synthetic biology is their ability to degrade vegetal biomass, which is a promising feedstock for the biotechnological production of organic acids. The Fungal Culture Collection of the International Centre of Microbial Resources (CIRM-CF), curated by our laboratory, contains more than 1600 strains of filamentous fungi, mainly Basidiomycetes and Ascomycetes. The natural biodiversity found in this collection is wide, with strains collected from around the world in different climatic conditions. This collection is mainly studied to unravel the arsenal of secreted lignocellulolytic enzymes available to the fungi in order to enhance biomass degradation. While the fungal biodiversity is a tremendous reservoir for “green” molecules production, its potentiality for organic acids production is not completely known. Results: In this study, we screened 40 strains of Ascomycota and 26 strains of Basidiomycota, representing the distribution of fungal diversity of the CIRM-CF collection, in order to evaluate their potential for organic acid and ethanol production, in a glucose liquid medium. We observed that most of the filamentous fungi are able to grow and acidify the medium. We were also able to discriminate two groups of filamentous fungi considering their organic acid production at day 6 of incubation. This first group represented fungi co-producing a wide variety of organic acids and ethanol at concentrations up to 4 g.L �1 and was composed of all the Aspergilli and only 3 other Ascomycota. The second group was composed of the remaining Ascomycota and all the Basidiomycota which produced mainly ethanol. Among the Basidiomycota, two strains produced oxalic acid and one strain produced gluconic and formic acid. Six strains of Aspergillus producing high concentrations of oxalic, citric and gluconic acids, and ethanol were selected for metabolism analysis. Conclusion: These results illustrate the versatility in metabolites production among the fungal kingdom. Moreover, we found that some of the studied strains have good predispositions to produce valuable molecules. These strains could be of great interest in the study ofmetabolism and may represent new models for synthetic biology or consolidated bioprocessing of biomass.

111 citations