scispace - formally typeset
Search or ask a question
Author

Sabine Thiberge

Bio: Sabine Thiberge is an academic researcher from Pasteur Institute. The author has contributed to research in topics: Plasmodium berghei & Plasmodium. The author has an hindex of 24, co-authored 34 publications receiving 2542 citations. Previous affiliations of Sabine Thiberge include French Institute of Health and Medical Research & Centre national de la recherche scientifique.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that only a proportion of the parasites enter blood capillaries, whereas others are drained by lymphatics, andymph sporozoites stop at the proximal lymph node, where most are degraded inside dendritic leucocytes, but some can partially differentiate into exoerythrocytic stages.
Abstract: Plasmodium, the parasite that causes malaria, is transmitted by a mosquito into the dermis and must reach the liver before infecting erythrocytes and causing disease. We present here a quantitative, real-time analysis of the fate of parasites transmitted in a rodent system. We show that only a proportion of the parasites enter blood capillaries, whereas others are drained by lymphatics. Lymph sporozoites stop at the proximal lymph node, where most are degraded inside dendritic leucocytes, but some can partially differentiate into exoerythrocytic stages. This previously unrecognized step of the parasite life cycle could influence the immune response of the host, and may have implications for vaccination strategies against the preerythrocytic stages of the parasite.

575 citations

Journal ArticleDOI
TL;DR: It is proposed that the cell traversal activity of the sporozoite must be turned on for progression to the liver parenchyma, where it must be switched off for infection of a final hepatocyte.

226 citations

Journal ArticleDOI
TL;DR: It is shown that sporozoites move in the mosquito by gliding, a type of motility associated with their capacity to invade host cells, and that it may control parasite transmission.
Abstract: Malaria is contracted when Plasmodium sporozoites are inoculated into the vertebrate host during the blood meal of a mosquito. In infected mosquitoes, sporozoites are present in large numbers in the secretory cavities of the salivary glands at the most distal site of the salivary system. However, how sporozoites move through the salivary system of the mosquito, both in resting and feeding mosquitoes, is unknown. Here, we observed fluorescent Plasmodium berghei sporozoites within live Anopheles stephensi mosquitoes and their salivary glands and ducts. We show that sporozoites move in the mosquito by gliding, a type of motility associated with their capacity to invade host cells. Unlike in vitro, sporozoite gliding inside salivary cavities and ducts is modulated in speed and motion pattern. Imaging of sporozoite discharge through the proboscis of salivating mosquitoes indicates that sporozoites need to locomote from cavities into ducts to be ejected and that their progression inside ducts favours their early ejection. These observations suggest that sporozoite gliding allows not only for cell invasion but also for parasite locomotion in host tissues, and that it may control parasite transmission.

193 citations

Journal ArticleDOI
TL;DR: Malaria sporozoites cross the liver sinusoidal barrier, target Kupffer cells and endothelial cells with cell traversal inhibiting sporozoite clearance.
Abstract: Malaria infection starts when the sporozoite stage of the Plasmodium parasite is injected into the skin by a mosquito. Sporozoites are known to traverse host cells before finally invading a hepatocyte and multiplying into erythrocyte-infecting forms, but how sporozoites reach hepatocytes in the liver and the role of host cell traversal (CT) remain unclear. We report the first quantitative imaging study of sporozoite liver infection in rodents. We show that sporozoites can cross the liver sinusoidal barrier by multiple mechanisms, targeting Kupffer cells (KC) or endothelial cells and associated or not with the parasite CT activity. We also show that the primary role of CT is to inhibit sporozoite clearance by KC during locomotion inside the sinusoid lumen, before crossing the barrier. By being involved in multiple steps of the sporozoite journey from the skin to the final hepatocyte, the parasite proteins mediating host CT emerge as ideal antibody targets for vaccination against the parasite.

177 citations

Journal ArticleDOI
TL;DR: This work generates Plasmodium sporozoites and merozoites and Toxoplasma tachyzoites lacking apical membrane antigen 1, and finds that the latter two are impaired in host cell attachment but the three display normal host cell penetration through the junction.
Abstract: Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface and actively sliding through the junction inside an intracellular vacuole. Apical membrane antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is considered to have multiple important roles during host cell penetration, primarily in structuring the junction by interacting with the rhoptry neck 2 protein and transducing the force generated by the parasite motor during internalization. Here, we generate Plasmodium sporozoites and merozoites and Toxoplasma tachyzoites lacking apical membrane antigen 1, and find that the latter two are impaired in host cell attachment but the three display normal host cell penetration through the junction. Therefore, apical membrane antigen 1, rather than an essential invasin, is a dispensable adhesin of apicomplexan zoites. These genetic data have implications on the use of apical membrane antigen 1 or the apical membrane antigen 1–rhoptry neck 2 interaction as targets of intervention strategies against malaria or other diseases caused by apicomplexans.

136 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review summarizes what is understood about naturally acquired and experimentally induced immunity against malaria with the help of evolving insights provided by biotechnology and places these insights in the context of historical, clinical, and epidemiological observations.
Abstract: Naturally acquired immunity to falciparum malaria protects millions of people routinely exposed to Plasmodium falciparum infection from severe disease and death. There is no clear concept about how this protection works. There is no general agreement about the rate of onset of acquired immunity or what constitutes the key determinants of protection; much less is there a consensus regarding the mechanism(s) of protection. This review summarizes what is understood about naturally acquired and experimentally induced immunity against malaria with the help of evolving insights provided by biotechnology and places these insights in the context of historical, clinical, and epidemiological observations. We advocate that naturally acquired immunity should be appreciated as being virtually 100% effective against severe disease and death among heavily exposed adults. Even the immunity that occurs in exposed infants may exceed 90% effectiveness. The induction of an adult-like immune status among high-risk infants in sub-Saharan Africa would greatly diminish disease and death caused by P. falciparum. The mechanism of naturally acquired immunity that occurs among adults living in areas of hyper- to holoendemicity should be understood with a view toward duplicating such protection in infants and young children in areas of endemicity.

1,008 citations

Journal ArticleDOI
15 Aug 2008-Science
TL;DR: Infection with the obligate intracellular protozoan Leishmania major (L.m.m.) appears to have evolved to both evade and exploit the innate host response to sand fly bite in order to establish and promote disease.
Abstract: Infection with the obligate intracellular protozoan Leishmania is thought to be initiated by direct parasitization of macrophages, but the early events following transmission to the skin by vector sand flies have been difficult to examine directly. Using dynamic intravital microscopy and flow cytometry, we observed a rapid and sustained neutrophilic infiltrate at localized sand fly bite sites. Invading neutrophils efficiently captured Leishmania major (L.m.) parasites early after sand fly transmission or needle inoculation, but phagocytosed L.m. remained viable and infected neutrophils efficiently initiated infection. Furthermore, neutrophil depletion reduced, rather than enhanced, the ability of parasites to establish productive infections. Thus, L.m. appears to have evolved to both evade and exploit the innate host response to sand fly bite in order to establish and promote disease.

744 citations

Journal ArticleDOI
TL;DR: Insights into parasite biology, human immunity, and vector behavior will guide efforts to translate parasite and mosquito genome sequences into novel interventions, including drugs, vaccines, and insecticides.
Abstract: There are still approximately 500 million cases of malaria and 1 million deaths from malaria each year. Yet recently, malaria incidence has been dramatically reduced in some parts of Africa by increasing deployment of anti-mosquito measures and new artemisinin-containing treatments, prompting renewed calls for global eradication. However, treatment and mosquito control currently depend on too few compounds and thus are vulnerable to the emergence of compound-resistant parasites and mosquitoes. As discussed in this Review, new drugs, vaccines, and insecticides, as well as improved surveillance methods, are research priorities. Insights into parasite biology, human immunity, and vector behavior will guide efforts to translate parasite and mosquito genome sequences into novel interventions.

716 citations

Journal ArticleDOI
01 Sep 2006-Science
TL;DR: It is shown that parasites induce the death and the detachment of their host hepatocytes, followed by the budding of parasite-filled vesicles (merosomes) into the sinusoid lumen, which ensures both the migration of parasites into the bloodstream and their protection from host immunity.
Abstract: The merozoite stage of the malaria parasite that infects erythrocytes and causes the symptoms of the disease is initially formed inside host hepatocytes. However, the mechanism by which hepatic merozoites reach blood vessels (sinusoids) in the liver and escape the host immune system before invading erythrocytes remains unknown. Here, we show that parasites induce the death and the detachment of their host hepatocytes, followed by the budding of parasite-filled vesicles (merosomes) into the sinusoid lumen. Parasites simultaneously inhibit the exposure of phosphatidylserine on the outer leaflet of host plasma membranes, which act as "eat me" signals to phagocytes. Thus, the hepatocyte-derived merosomes appear to ensure both the migration of parasites into the bloodstream and their protection from host immunity.

576 citations

Journal ArticleDOI
TL;DR: It is shown that only a proportion of the parasites enter blood capillaries, whereas others are drained by lymphatics, andymph sporozoites stop at the proximal lymph node, where most are degraded inside dendritic leucocytes, but some can partially differentiate into exoerythrocytic stages.
Abstract: Plasmodium, the parasite that causes malaria, is transmitted by a mosquito into the dermis and must reach the liver before infecting erythrocytes and causing disease. We present here a quantitative, real-time analysis of the fate of parasites transmitted in a rodent system. We show that only a proportion of the parasites enter blood capillaries, whereas others are drained by lymphatics. Lymph sporozoites stop at the proximal lymph node, where most are degraded inside dendritic leucocytes, but some can partially differentiate into exoerythrocytic stages. This previously unrecognized step of the parasite life cycle could influence the immune response of the host, and may have implications for vaccination strategies against the preerythrocytic stages of the parasite.

575 citations