scispace - formally typeset
Search or ask a question
Author

Sabita Maharjan

Other affiliations: Simula Research Laboratory
Bio: Sabita Maharjan is an academic researcher from University of Oslo. The author has contributed to research in topics: Smart grid & Mobile edge computing. The author has an hindex of 39, co-authored 110 publications receiving 6462 citations. Previous affiliations of Sabita Maharjan include Simula Research Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: Numerical results indicate that the double auction mechanism can achieve social welfare maximization while protecting privacy of the PHEVs and security analysis shows that the proposed PETCON improves transaction security and privacy protection.
Abstract: We propose a localized peer-to-peer (P2P) electricity trading model for locally buying and selling electricity among plug-in hybrid electric vehicles (PHEVs) in smart grids Unlike traditional schemes, which transport electricity over long distances and through complex electricity transportation meshes, our proposed model achieves demand response by providing incentives to discharging PHEVs to balance local electricity demand out of their own self-interests However, since transaction security and privacy protection issues present serious challenges, we explore a promising consortium blockchain technology to improve transaction security without reliance on a trusted third party A localized P 2P E lectricity T rading system with CO nsortium blockchai N (PETCON) method is proposed to illustrate detailed operations of localized P2P electricity trading Moreover, the electricity pricing and the amount of traded electricity among PHEVs are solved by an iterative double auction mechanism to maximize social welfare in this electricity trading Security analysis shows that our proposed PETCON improves transaction security and privacy protection Numerical results based on a real map of Texas indicate that the double auction mechanism can achieve social welfare maximization while protecting privacy of the PHEVs

933 citations

Journal ArticleDOI
TL;DR: An optimization problem is formulated to minimize the energy consumption of the offloading system, where the energy cost of both task computing and file transmission are taken into consideration, and an EECO scheme is designed, which jointly optimizes offloading and radio resource allocation to obtain the minimal energy consumption under the latency constraints.
Abstract: Mobile edge computing (MEC) is a promising paradigm to provide cloud-computing capabilities in close proximity to mobile devices in fifth-generation (5G) networks. In this paper, we study energy-efficient computation offloading (EECO) mechanisms for MEC in 5G heterogeneous networks. We formulate an optimization problem to minimize the energy consumption of the offloading system, where the energy cost of both task computing and file transmission are taken into consideration. Incorporating the multi-access characteristics of the 5G heterogeneous network, we then design an EECO scheme, which jointly optimizes offloading and radio resource allocation to obtain the minimal energy consumption under the latency constraints. Numerical results demonstrate energy efficiency improvement of our proposed EECO scheme.

730 citations

Journal ArticleDOI
TL;DR: This paper proposes a Stackelberg game between utility companies and end-users to maximize the revenue of each utility company and the payoff of each user and derive analytical results for the StACkelberg equilibrium of the game and proves that a unique solution exists.
Abstract: Demand Response Management (DRM) is a key component in the smart grid to effectively reduce power generation costs and user bills. However, it has been an open issue to address the DRM problem in a network of multiple utility companies and consumers where every entity is concerned about maximizing its own benefit. In this paper, we propose a Stackelberg game between utility companies and end-users to maximize the revenue of each utility company and the payoff of each user. We derive analytical results for the Stackelberg equilibrium of the game and prove that a unique solution exists. We develop a distributed algorithm which converges to the equilibrium with only local information available for both utility companies and end-users. Though DRM helps to facilitate the reliability of power supply, the smart grid can be succeptible to privacy and security issues because of communication links between the utility companies and the consumers. We study the impact of an attacker who can manipulate the price information from the utility companies. We also propose a scheme based on the concept of shared reserve power to improve the grid reliability and ensure its dependability.

705 citations

Journal ArticleDOI
TL;DR: This article designs a blockchain empowered secure data sharing architecture for distributed multiple parties, and incorporates privacy-preserved federated learning in the consensus process of permissioned blockchain, so that the computing work for consensus can also be used for federated training.
Abstract: The rapid increase in the volume of data generated from connected devices in industrial Internet of Things paradigm, opens up new possibilities for enhancing the quality of service for the emerging applications through data sharing. However, security and privacy concerns (e.g., data leakage) are major obstacles for data providers to share their data in wireless networks. The leakage of private data can lead to serious issues beyond financial loss for the providers. In this article, we first design a blockchain empowered secure data sharing architecture for distributed multiple parties. Then, we formulate the data sharing problem into a machine-learning problem by incorporating privacy-preserved federated learning. The privacy of data is well-maintained by sharing the data model instead of revealing the actual data. Finally, we integrate federated learning in the consensus process of permissioned blockchain, so that the computing work for consensus can also be used for federated training. Numerical results derived from real-world datasets show that the proposed data sharing scheme achieves good accuracy, high efficiency, and enhanced security.

668 citations

Journal ArticleDOI
TL;DR: A reputation-based data sharing scheme to ensure high-quality data sharing among vehicles and a consortium blockchain and smart contract technologies to achieve secure data storage and sharing in vehicular edge networks.
Abstract: The drastically increasing volume and the growing trend on the types of data have brought in the possibility of realizing advanced applications such as enhanced driving safety, and have enriched existing vehicular services through data sharing among vehicles and data analysis. Due to limited resources with vehicles, vehicular edge computing and networks (VECONs) i.e., the integration of mobile edge computing and vehicular networks, can provide powerful computing and massive storage resources. However, road side units that primarily presume the role of vehicular edge computing servers cannot be fully trusted, which may lead to serious security and privacy challenges for such integrated platforms despite their promising potential and benefits. We exploit consortium blockchain and smart contract technologies to achieve secure data storage and sharing in vehicular edge networks. These technologies efficiently prevent data sharing without authorization. In addition, we propose a reputation-based data sharing scheme to ensure high-quality data sharing among vehicles. A three-weight subjective logic model is utilized for precisely managing reputation of the vehicles. Numerical results based on a real dataset show that our schemes achieve reasonable efficiency and high-level of security for data sharing in VECONs.

569 citations


Cited by
More filters
Journal Article
TL;DR: This research examines the interaction between demand and socioeconomic attributes through Mixed Logit models and the state of art in the field of automatic transport systems in the CityMobil project.
Abstract: 2 1 The innovative transport systems and the CityMobil project 10 1.1 The research questions 10 2 The state of art in the field of automatic transport systems 12 2.1 Case studies and demand studies for innovative transport systems 12 3 The design and implementation of surveys 14 3.1 Definition of experimental design 14 3.2 Questionnaire design and delivery 16 3.3 First analyses on the collected sample 18 4 Calibration of Logit Multionomial demand models 21 4.1 Methodology 21 4.2 Calibration of the “full” model. 22 4.3 Calibration of the “final” model 24 4.4 The demand analysis through the final Multinomial Logit model 25 5 The analysis of interaction between the demand and socioeconomic attributes 31 5.1 Methodology 31 5.2 Application of Mixed Logit models to the demand 31 5.3 Analysis of the interactions between demand and socioeconomic attributes through Mixed Logit models 32 5.4 Mixed Logit model and interaction between age and the demand for the CTS 38 5.5 Demand analysis with Mixed Logit model 39 6 Final analyses and conclusions 45 6.1 Comparison between the results of the analyses 45 6.2 Conclusions 48 6.3 Answers to the research questions and future developments 52

4,784 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management is provided in this paper, where a set of issues, challenges, and future research directions for MEC are discussed.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized mobile cloud computing toward mobile edge computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also discuss a set of issues, challenges, and future research directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,992 citations

Posted Content
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management and recent standardization efforts on MEC are introduced.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized Mobile Cloud Computing towards Mobile Edge Computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also present a research outlook consisting of a set of promising directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,289 citations

Journal ArticleDOI
TL;DR: This paper describes major use cases and reference scenarios where the mobile edge computing (MEC) is applicable and surveys existing concepts integrating MEC functionalities to the mobile networks and discusses current advancement in standardization of the MEC.
Abstract: Technological evolution of mobile user equipment (UEs), such as smartphones or laptops, goes hand-in-hand with evolution of new mobile applications. However, running computationally demanding applications at the UEs is constrained by limited battery capacity and energy consumption of the UEs. A suitable solution extending the battery life-time of the UEs is to offload the applications demanding huge processing to a conventional centralized cloud. Nevertheless, this option introduces significant execution delay consisting of delivery of the offloaded applications to the cloud and back plus time of the computation at the cloud. Such a delay is inconvenient and makes the offloading unsuitable for real-time applications. To cope with the delay problem, a new emerging concept, known as mobile edge computing (MEC), has been introduced. The MEC brings computation and storage resources to the edge of mobile network enabling it to run the highly demanding applications at the UE while meeting strict delay requirements. The MEC computing resources can be exploited also by operators and third parties for specific purposes. In this paper, we first describe major use cases and reference scenarios where the MEC is applicable. After that we survey existing concepts integrating MEC functionalities to the mobile networks and discuss current advancement in standardization of the MEC. The core of this survey is, then, focused on user-oriented use case in the MEC, i.e., computation offloading. In this regard, we divide the research on computation offloading to three key areas: 1) decision on computation offloading; 2) allocation of computing resource within the MEC; and 3) mobility management. Finally, we highlight lessons learned in area of the MEC and we discuss open research challenges yet to be addressed in order to fully enjoy potentials offered by the MEC.

1,829 citations