scispace - formally typeset
Search or ask a question
Author

Saeed Reza Kheradpisheh

Bio: Saeed Reza Kheradpisheh is an academic researcher from Shahid Beheshti University. The author has contributed to research in topics: Spiking neural network & MNIST database. The author has an hindex of 12, co-authored 27 publications receiving 1477 citations. Previous affiliations of Saeed Reza Kheradpisheh include University of Tehran & Kharazmi University.

Papers
More filters
Journal ArticleDOI
TL;DR: The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNN's typically require many fewer operations and are the better candidates to process spatio-temporal data.

756 citations

Journal ArticleDOI
TL;DR: The results suggest that the combination of STDP with latency coding may be a key to understanding the way that the primate visual system learns, its remarkable processing speed and its low energy consumption.

510 citations

Journal ArticleDOI
TL;DR: This work benchmarked eight state-of-the-art DCNNs, the HMAX model, and a baseline shallow model and compared their results to those of humans with backward masking to demonstrate that shallow nets can outperform deep nets and humans when variations are weak.
Abstract: Deep convolutional neural networks (DCNNs) have attracted much attention recently, and have shown to be able to recognize thousands of object categories in natural image databases. Their architecture is somewhat similar to that of the human visual system: both use restricted receptive fields, and a hierarchy of layers which progressively extract more and more abstracted features. Yet it is unknown whether DCNNs match human performance at the task of view-invariant object recognition, whether they make similar errors and use similar representations for this task, and whether the answers depend on the magnitude of the viewpoint variations. To investigate these issues, we benchmarked eight state-of-the-art DCNNs, the HMAX model, and a baseline shallow model and compared their results to those of humans with backward masking. Unlike in all previous DCNN studies, we carefully controlled the magnitude of the viewpoint variations to demonstrate that shallow nets can outperform deep nets and humans when variations are weak. When facing larger variations, however, more layers were needed to match human performance and error distributions, and to have representations that are consistent with human behavior. A very deep net with 18 layers even outperformed humans at the highest variation level, using the most human-like representations.

161 citations

Journal ArticleDOI
TL;DR: For the first time, it is shown that RL can be used efficiently to train a spiking neural network (SNN) to perform object recognition in natural images without using an external classifier.
Abstract: Reinforcement learning (RL) has recently regained popularity with major achievements such as beating the European game of Go champion. Here, for the first time, we show that RL can be used efficiently to train a spiking neural network (SNN) to perform object recognition in natural images without using an external classifier. We used a feedforward convolutional SNN and a temporal coding scheme where the most strongly activated neurons fire first, while less activated ones fire later, or not at all. In the highest layers, each neuron was assigned to an object category, and it was assumed that the stimulus category was the category of the first neuron to fire. If this assumption was correct, the neuron was rewarded, i.e., spike-timing-dependent plasticity (STDP) was applied, which reinforced the neuron’s selectivity. Otherwise, anti-STDP was applied, which encouraged the neuron to learn something else. As demonstrated on various image data sets (Caltech, ETH-80, and NORB), this reward-modulated STDP (R-STDP) approach has extracted particularly discriminative visual features, whereas classic unsupervised STDP extracts any feature that consistently repeats. As a result, R-STDP has outperformed STDP on these data sets. Furthermore, R-STDP is suitable for online learning and can adapt to drastic changes such as label permutations. Finally, it is worth mentioning that both feature extraction and classification were done with spikes, using at most one spike per neuron. Thus, the network is hardware friendly and energy efficient.

131 citations

Journal ArticleDOI
TL;DR: It is shown that the association of both biologically inspired network architecture and learning rule significantly improves the models' performance when facing challenging invariant object recognition problems.

128 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A SNN for digit recognition which is based on mechanisms with increased biological plausibility, i.e., conductance-based instead of current-based synapses, spike-timing-dependent plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking threshold is presented.
Abstract: In order to understand how the mammalian neocortex is performing computations, two things are necessary; we need to have a good understanding of the available neuronal processing units and mechanisms, and we need to gain a better understanding of how those mechanisms are combined to build functioning systems. Therefore, in recent years there is an increasing interest in how spiking neural networks (SNN) can be used to perform complex computations or solve pattern recognition tasks. However, it remains a challenging task to design SNNs which use biologically plausible mechanisms (especially for learning new patterns), since most of such SNN architectures rely on training in a rate-based network and subsequent conversion to a SNN. We present a SNN for digit recognition which is based on mechanisms with increased biological plausibility, i.e. conductance-based instead of current-based synapses, spike-timing-dependent plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking threshold. Unlike most other systems, we do not use a teaching signal and do not present any class labels to the network. Using this unsupervised learning scheme, our architecture achieves 95% accuracy on the MNIST benchmark, which is better than previous SNN implementations without supervision. The fact that we used no domain-specific knowledge points toward the general applicability of our network design. Also, the performance of our network scales well with the number of neurons used and shows similar performance for four different learning rules, indicating robustness of the full combination of mechanisms, which suggests applicability in heterogeneous biological neural networks.

1,098 citations

Journal Article
TL;DR: The methodology proposed automatically adapts to the local structure when simulating paths across this manifold, providing highly efficient convergence and exploration of the target density, and substantial improvements in the time‐normalized effective sample size are reported when compared with alternative sampling approaches.
Abstract: The paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs that are required to tune proposal densities for Metropolis-Hastings or indeed Hamiltonian Monte Carlo and Metropolis adjusted Langevin algorithms. This allows for highly efficient sampling even in very high dimensions where different scalings may be required for the transient and stationary phases of the Markov chain. The methodology proposed exploits the Riemann geometry of the parameter space of statistical models and thus automatically adapts to the local structure when simulating paths across this manifold, providing highly efficient convergence and exploration of the target density. The performance of these Riemann manifold Monte Carlo methods is rigorously assessed by performing inference on logistic regression models, log-Gaussian Cox point processes, stochastic volatility models and Bayesian estimation of dynamic systems described by non-linear differential equations. Substantial improvements in the time-normalized effective sample size are reported when compared with alternative sampling approaches. MATLAB code that is available from http://www.ucl.ac.uk/statistics/research/rmhmc allows replication of all the results reported.

1,031 citations

01 Jan 1998
TL;DR: The lateral intraparietal area (LIP) as mentioned in this paper has been shown to have visual responses to stimuli appearing abruptly at particular retinal locations (their receptive fields) and the visual representation in LIP is sparse, with only the most salient or behaviourally relevant objects being strongly represented.
Abstract: When natural scenes are viewed, a multitude of objects that are stable in their environments are brought in and out of view by eye movements. The posterior parietal cortex is crucial for the analysis of space, visual attention and movement 1 . Neurons in one of its subdivisions, the lateral intraparietal area (LIP), have visual responses to stimuli appearing abruptly at particular retinal locations (their receptive fields)2. We have tested the responses of LIP neurons to stimuli that entered their receptive field by saccades. Neurons had little or no response to stimuli brought into their receptive field by saccades, unless the stimuli were behaviourally significant. We established behavioural significance in two ways: either by making a stable stimulus task-relevant, or by taking advantage of the attentional attraction of an abruptly appearing stimulus. Our results show that under ordinary circumstances the entire visual world is only weakly represented in LIP. The visual representation in LIP is sparse, with only the most salient or behaviourally relevant objects being strongly represented.

1,007 citations

Journal ArticleDOI
27 Nov 2019-Nature
TL;DR: An overview of the developments in neuromorphic computing for both algorithms and hardware is provided and the fundamentals of learning and hardware frameworks are highlighted, with emphasis on algorithm–hardware codesign.
Abstract: Guided by brain-like ‘spiking’ computational frameworks, neuromorphic computing—brain-inspired computing for machine intelligence—promises to realize artificial intelligence while reducing the energy requirements of computing platforms. This interdisciplinary field began with the implementation of silicon circuits for biological neural routines, but has evolved to encompass the hardware implementation of algorithms with spike-based encoding and event-driven representations. Here we provide an overview of the developments in neuromorphic computing for both algorithms and hardware and highlight the fundamentals of learning and hardware frameworks. We discuss the main challenges and the future prospects of neuromorphic computing, with emphasis on algorithm–hardware codesign. The authors review the advantages and future prospects of neuromorphic computing, a multidisciplinary engineering concept for energy-efficient artificial intelligence with brain-inspired functionality.

877 citations

Journal ArticleDOI
TL;DR: This Review provides an overview of memory devices and the key computational primitives enabled by these memory devices as well as their applications spanning scientific computing, signal processing, optimization, machine learning, deep learning and stochastic computing.
Abstract: Traditional von Neumann computing systems involve separate processing and memory units. However, data movement is costly in terms of time and energy and this problem is aggravated by the recent explosive growth in highly data-centric applications related to artificial intelligence. This calls for a radical departure from the traditional systems and one such non-von Neumann computational approach is in-memory computing. Hereby certain computational tasks are performed in place in the memory itself by exploiting the physical attributes of the memory devices. Both charge-based and resistance-based memory devices are being explored for in-memory computing. In this Review, we provide a broad overview of the key computational primitives enabled by these memory devices as well as their applications spanning scientific computing, signal processing, optimization, machine learning, deep learning and stochastic computing. This Review provides an overview of memory devices and the key computational primitives for in-memory computing, and examines the possibilities of applying this computing approach to a wide range of applications.

841 citations