scispace - formally typeset
Search or ask a question
Author

Safa Kinaneh

Bio: Safa Kinaneh is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Heart failure & Heparanase. The author has an hindex of 5, co-authored 11 publications receiving 92 citations.
Topics: Heart failure, Heparanase, Kidney, Medicine, Urology

Papers
More filters
Journal ArticleDOI
TL;DR: Zaid A. Abassi, Karl Skorecki, Samuel Noam Heyman, Safa Kinaneh, and Zaher Armaly Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
Abstract: Zaid A. Abassi, Karl Skorecki, Samuel Noam Heyman, Safa Kinaneh, and Zaher Armaly Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Laboratory Medicine, Rambam Medical Center, Haifa, Israel; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem, Israel; and Department of Nephrology, Nazareth Hospital, Edinburgh Medical Missionary Society, Nazareth, Israel

56 citations

Journal ArticleDOI
TL;DR: The importance of focusing on ACE2 physiology in the evaluation and management of COVID-19 disease highlights the importance of counterbalancing the vasoconstrictive, pro-inflammatory, and pro-coagulant effects of ACE-induced Ang II.
Abstract: Engulfed by the grave consequences of the coronavirus disease 2019 (COVID-19) pandemic, a better understanding of the unique pattern of viral invasion and virulence is of utmost importance. Angiotensin (Ang)-converting enzyme (ACE) 2 is a key component in COVID-19 infection. Expressed on cell membranes in target pulmonary and intestinal host cells, ACE2 serves as an anchor for initial viral homing, binding to COVID-19 spike-protein domains to enable viral entry into cells and subsequent replication. Viral attachment is facilitated by a multiplicity of membranal and circulating proteases that further uncover attachment loci. Inherent or acquired enhancement of membrane ACE2 expression, likely leads to a higher degree of infection and may explain the predisposition to severe disease among males, diabetics, or patients with respiratory or cardiac diseases. Additionally, once attached, viral intracellular translocation and replication leads to depletion of membranal ACE2 through degradation and shedding. ACE2 generates Ang 1-7, which serves a critical role in counterbalancing the vasoconstrictive, pro-inflammatory, and pro-coagulant effects of ACE-induced Ang II. Therefore, Ang 1-7 may decline in tissues infected by COVID-19, leading to unopposed deleterious outcomes of Ang II. This likely leads to microcirculatory derangement with endothelial damage, profound inflammation, and coagulopathy that characterize the more severe clinical manifestations of COVID-19 infection. Our understanding of COVID-ACE2 associations is incomplete, and some conceptual formulations are currently speculative, leading to controversies over issues such as the usage of ACE inhibitors or Ang-receptor blockers (ARBs). This highlights the importance of focusing on ACE2 physiology in the evaluation and management of COVID-19 disease.

48 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the expression of ACE2, furin, TMPRSS2 and ADAM17 in the lung, heart and kidneys of rats with CHF to understand the exaggerated susceptibility of clinical CHF patients to COVID-19 disease.
Abstract: Congestive heart failure (CHF) is often associated with kidney and pulmonary dysfunction. Activation of the renin-angiotensin-aldosterone system (RAAS) contributes to avid sodium retention, cardiac hypertrophy and oedema formation, including lung congestion. While the status of the classic components of RAAS such as renin, angiotensin converting enzyme (ACE), angiotensin II (Ang II) and angiotensin II receptor AT-1 is well studied in CHF, the expression of angiotensin converting enzyme-2 (ACE2), a key enzyme of angiotensin 1-7 (Ang 1-7) generation in the pulmonary, cardiac and renal systems has not been studied thoroughly in this clinical setting. This issue is of a special interest as Ang 1-7 counterbalance the vasoconstrictory, pro-inflammatory and pro-proliferative actions of Ang II. Furthermore, CHF predisposes to COVID-19 disease severity, while ACE2 also serves as the binding domain of SARS-CoV-2 in human host-cells, and acts in concert with furin, an important enzyme in the synthesis of BNP in CHF, in permeating viral functionality along TMPRSST2. ADAM17 governs ACE2 shedding from cell membranes. Therefore, the present study was designed to investigate the expression of ACE2, furin, TMPRSS2 and ADAM17 in the lung, heart and kidneys of rats with CHF to understand the exaggerated susceptibility of clinical CHF to COVID-19 disease. Heart failure was induced in male Sprague Dawley rats by the creation of a surgical aorto-caval fistula. Sham-operated rats served as controls. One week after surgery, the animals were subdivided into compensated and decompensated CHF according to urinary sodium excretion. Both groups and their controls were sacrificed, and their hearts, lungs and kidneys were harvested for assessment of tissue remodelling and ACE2, furin, TMPRSS2 and ADAM17 immunoreactivity, expression and immunohistochemical staining. ACE2 immunoreactivity and mRNA levels increased in pulmonary, cardiac and renal tissues of compensated, but not in decompensated CHF. Furin immunoreactivity was increased in both compensated and decompensated CHF in the pulmonary, cardiac tissues and renal cortex but not in the medulla. Interestingly, both the expression and abundance of pulmonary, cardiac and renal TMPRSS2 decreased in CHF in correlation with the severity of the disease. Pulmonary, cardiac and renal ADAM17 mRNA levels were also downregulated in decompensated CHF. Circulating furin levels increased in proportion to CHF severity, whereas plasma ACE2 remained unchanged. In summary, ACE2 and furin are overexpressed in the pulmonary, cardiac and renal tissues of compensated and to a lesser extent of decompensated CHF as compared with their sham controls. The increased expression of the ACE2 in heart failure may serve as a compensatory mechanism, counterbalancing the over-activity of the deleterious isoform, ACE. Downregulated ADAM17 might enhance membranal ACE2 in COVID-19 disease, whereas the suppression of TMPRSS2 in CHF argues against its involvement in the exaggerated susceptibility of CHF patients to SARS-CoV2.

16 citations

Journal ArticleDOI
TL;DR: The results showed that angiotensin II decreased the ability of the lungs to clear edema and enhanced the fibrosis process via phosphorylation of the mitogen-activated protein kinases p38 and p42/44, which are generally involved in cellular responses to pro-inflammatory cytokines.
Abstract: Congestive heart failure (CHF) has become a major medical problem in the western world with high morbidity and mortality rates. CHF adversely affects several systems, mainly the kidneys and the lungs. While the involvement of the renin-angiotensin-aldosterone system and the sympathetic nervous system in the progression of cardiovascular, pulmonary, and renal dysfunction in experimental and clinical CHF is well established, the importance of pro-inflammatory mediators in the pathogenesis of this clinical setting is still evolving. In this context, CHF is associated with overexpression of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1, and IL-6, which are activated in response to environmental injury. This family of cytokines has been implicated in the deterioration of CHF, where it plays an important role in initiating and integrating homeostatic responses both at the myocardium and circulatory levels. We and others showed that angiotensin II decreased the ability of the lungs to clear edema and enhanced the fibrosis process via phosphorylation of the mitogen-activated protein kinases p38 and p42/44, which are generally involved in cellular responses to pro-inflammatory cytokines. Literature data also indicate the involvement of these effectors in modulating ion channel activity. It has been reported that in heart failure due to mitral stenosis; there were varying degrees of vascular and other associated parenchymal changes such as edema and fibrosis. In this review, we will discuss the effects of cytokines and other inflammatory mediators on the kidneys and the lungs in heart failure; especially their role in renal and alveolar ion channels activity and fluid balance.

15 citations

Journal ArticleDOI
TL;DR: It is postulate that the obtained upregulation of pulmonary PCSK6/Corin along NPs in rats with decompensated CHF may represent a counterbalance response to the inflammatory milieu characterizing CHF especially in severe cases.
Abstract: Congestive heart failure (CHF) often leads to progressive cardiac hypertrophy and salt/water retention as evident by peripheral and lung edema. Although the pathogenesis of CHF remains largely unclarified, it is widely accepted that neurohormonal changes and inflammatory processes are profoundly involved in structural and functional deterioration of vital organs including, heart, kidney and lungs. Corin, a cardiac serine protease, is responsible for converting pro-ANP and pro-BNP to biologically active natriuretic peptides (NPs). Although the involvement of corin in cardiac hypertrophy and heart failure was extensively studied, the alterations in corin and PCSK6, a key enzyme in the conversion of procorin to corin, have not been studied in the pulmonary tissue. Thus, this study aims at examining the status of PCSK6/Corin in the lung of rats with CHF induced by the creation of aorto-caval fistula (ACF) between the abdominal aorta and vena cava in SD rats. Rats with ACF were divided into 2 subgroups based on the pattern of their daily sodium excretion, compensated and decompensated CHF. Placement of ACF led to cardiac hypertrophy, pulmonary congestion, and renal dysfunction, which were more severe in the decompensated subgroup, despite remarkable elevation of circulatory ANP and BNP levels. Corin mRNA and immunoreactive peptide were detected in pulmonary tissue of all experimental groups. However, the expression and abundance of pulmonary corin significantly increased in the decompensated animals, but not in the compensated ones. Noteworthy, the expression of PCSK6 and ANP/BNP in the pulmonary tissue followed a similar pattern as corin. The upregulation of pulmonary Corin/PCSK6 and NPs were accompanied by local activation of cathepsin L and certain cytokines including IL-6. In light of the anti-inflammatory role of NPs, we postulate that the obtained upregulation of pulmonary PCSK6/Corin along NPs in rats with decompensated CHF may represent a counterbalance response to the inflammatory milieu characterizing CHF especially in severe cases.

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Understanding immune evasion strategies of SARS-CoV2 and the resulting delayed massive immune response will result in the identification of biomarkers that predict outcomes as well as phenotype and disease stage specific treatments that will likely include both antiviral and immune modulating agents.

482 citations

Journal ArticleDOI
TL;DR: The focus of the current review is to explore metabolic and immunological abnormalities affecting several organs of T2DM patients and explain the mechanisms, whereby diabetic patients become more susceptible to infectious diseases.
Abstract: Metabolic abnormalities such as dyslipidemia, hyperinsulinemia, or insulin resistance and obesity play key roles in the induction and progression of type 2 diabetes mellitus (T2DM). The field of immunometabolism implies a bidirectional link between the immune system and metabolism, in which inflammation plays an essential role in the promotion of metabolic abnormalities (e.g., obesity and T2DM), and metabolic factors, in turn, regulate immune cell functions. Obesity as the main inducer of a systemic low-level inflammation is a main susceptibility factor for T2DM. Obesity-related immune cell infiltration, inflammation, and increased oxidative stress promote metabolic impairments in the insulin-sensitive tissues and finally, insulin resistance, organ failure, and premature aging occur. Hyperglycemia and the subsequent inflammation are the main causes of micro- and macroangiopathies in the circulatory system. They also promote the gut microbiota dysbiosis, increased intestinal permeability, and fatty liver disease. The impaired immune system together with metabolic imbalance also increases the susceptibility of patients to several pathogenic agents such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Thus, the need for a proper immunization protocol among such patients is granted. The focus of the current review is to explore metabolic and immunological abnormalities affecting several organs of T2DM patients and explain the mechanisms, whereby diabetic patients become more susceptible to infectious diseases.

183 citations

Journal ArticleDOI
TL;DR: In this article, the authors provided an overview of COVID-19 etiology vis-a-vis other zoonotic diseases, particularly SARS and MERS, and summarized various approaches and technologies employed to develop vaccines against COVID19 and summarized the attempts to repurpose various classes of drugs and novel therapeutic approaches.
Abstract: At the stroke of the New Year 2020, COVID-19, a zoonotic disease that would turn into a global pandemic, was identified in the Chinese city of Wuhan. Although unique in its transmission and virulence, COVID-19 is similar to zoonotic diseases, including other SARS variants (e.g., SARS-CoV) and MERS, in exhibiting severe flu-like symptoms and acute respiratory distress. Even at the molecular level, many parallels have been identified between SARS and COVID-19 so much so that the COVID-19 virus has been named SARS-CoV-2. These similarities have provided several opportunities to treat COVID-19 patients using clinical approaches that were proven to be effective against SARS. Importantly, the identification of similarities in how SARS-CoV and SARS-CoV-2 access the host, replicate, and trigger life-threatening pathological conditions have revealed opportunities to repurpose drugs that were proven to be effective against SARS. In this article, we first provided an overview of COVID-19 etiology vis-a-vis other zoonotic diseases, particularly SARS and MERS. Then, we summarized the characteristics of droplets/aerosols emitted by COVID-19 patients and how they aid in the transmission of the virus among people. Moreover, we discussed the molecular mechanisms that enable SARS-CoV-2 to access the host and become more contagious than other betacoronaviruses such as SARS-CoV. Further, we outlined various approaches that are currently being employed to diagnose and symptomatically treat COVID-19 in the clinic. Finally, we reviewed various approaches and technologies employed to develop vaccines against COVID-19 and summarized the attempts to repurpose various classes of drugs and novel therapeutic approaches.

143 citations

Journal ArticleDOI
TL;DR: A critical literature review suggests that the severity of SARS-CoV-2 infection is associated with dysregulation of inflammatory immune responses, which in turn inhibits the development of protective immunity to the infection.
Abstract: The 2019 coronavirus disease (COVID-19) pandemic caused by the virus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has created an unprecedented global crisis for the infrastructure sectors, including economic, political, healthcare, education, and research systems. Although over 90% of infected individuals are asymptomatic or manifest noncritical symptoms and will recover from the infection, those individuals presenting with critical symptoms are in urgent need of effective treatment options. Emerging data related to mechanism of severity and potential therapies for patients presenting with severe symptoms are scattered and therefore require a comprehensive analysis to focus research on developing effective therapeutics. A critical literature review suggests that the severity of SARS-CoV-2 infection is associated with dysregulation of inflammatory immune responses, which in turn inhibits the development of protective immunity to the infection. Therefore, the use of therapeutics that modulate inflammation without compromising the adaptive immune response could be the most effective therapeutic strategy.

124 citations