scispace - formally typeset
Search or ask a question
Author

Sagrario Martínez-Ramírez

Bio: Sagrario Martínez-Ramírez is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Cement & Ettringite. The author has an hindex of 27, co-authored 107 publications receiving 2955 citations. Previous affiliations of Sagrario Martínez-Ramírez include Complutense University of Madrid.


Papers
More filters
Journal ArticleDOI
TL;DR: The activation of fly ash/slag pastes with NaOH solutions has been studied in this paper, where the authors established the equations of the models describing the mechanical behaviour of these pastes as a function of the factors and levels considered.

745 citations

Journal ArticleDOI
TL;DR: In this article, the authors explored the reactivity and burnability of clinker made with fired red or white ceramic wall tile wastes and combinations of the two as alternative raw materials.
Abstract: The cement industry has for some time been seeking procedures that would effectively reduce the high energy and environmental costs of cement manufacture. One such procedure is the use of alternative materials as partial replacements for fuel, raw materials or even clinker. The present study explores the reactivity and burnability of cement raw mixes containing fired red or white ceramic wall tile wastes and combinations of the two as alternative raw materials. The results showed that the new raw mixes containing this kind of waste to be technically viable, and to have higher reactivity and burnability than a conventional mix, providing that the particle size of the waste used is lower than 90 μm. The mineralogical composition and distribution in the experimental clinker prepared were comparable to the properties of the clinker manufactured with conventional raw materials. Due to the presence of oxides such as ZnO, ZrO 2 and B 2 O 3 in tile glazing, the content of these oxides was higher in clinker made with such waste. The mix of red and white ceramic wall tile waste was found to perform equally or better than each type of waste separately, a promising indication that separation of the two would be unnecessary for the purpose described above.

210 citations

Book ChapterDOI
30 Mar 2012
TL;DR: In the characterization of building and construction materials, the most frequently analytical tool performed have been X-ray diffraction but also, thermal analysis and microscopic techniques as mentioned in this paper, which have become as a useful, non-destructive and easy technique to study the phase composition of initial but also the evolved materials due to their exposure to the climatic conditions.
Abstract: In the characterization of building and construction materials, the most frequently analytical tool performed have been X-ray diffraction but also, thermal analysis and microscopic techniques. Nowadays, infrared and other spectroscopic techniques have become as a useful, non-destructive and easy technique to study the phase composition of initial but also the evolved materials due to their exposure to the climatic conditions. Moreover, by using this tool is possible the detection of crystalline but also the amorphous phases very frequently developed on certain cementitious materials, mainly at early ages. The infrared spectroscopy is used both to gather information about the structure of compounds and as analytical tool to assess in qualitative and quantitative analysis of mixtures.

174 citations

Journal ArticleDOI
TL;DR: In this paper, a consolidating product based on nanoparticles of slaked lime (Ca(OH)2) dispersed in isopropyl alcohol was exposed under different relative humidities (RH), 33, 54, 75, and 90% during 7, 14, 21 and 28 days.

164 citations

Journal ArticleDOI
TL;DR: In this article, micro-Raman techniques were used for the first time to establish the existence of various forms of calcium carbonate at different depths in fully carbonated lime mortar, in trials conducted at a temperature of 20 °C and 75% relative humidity in a chamber with atmospheric CO 2.

140 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the work carried out on the chemical reaction, the source materials, and the factor affecting geopolymerization, and demonstrate that certain mix compositions and reaction conditions such as Al2O3/SiO2, alkali concentration, curing temperature with curing time, water/solid ratio and pH significantly influences the formation and properties of a geopolymers.
Abstract: Geopolymerization is a developing field of research for utilizing solid waste and by-products. It provides a mature and cost-effective solution to many problems where hazardous residue has to be treated and stored under critical environmental conditions. Geopolymer involves the silicates and aluminates of by-products to undergo process of geopolymerization. It is environmentally friendly and need moderate energy to produce. This review presents the work carried out on the chemical reaction, the source materials, and the factor affecting geopolymerization. Literature demonstrates that certain mix compositions and reaction conditions such as Al2O3/SiO2, alkali concentration, curing temperature with curing time, water/solid ratio and pH significantly influences the formation and properties of a geopolymer. It is utilized to manufacture precast structures and non-structural elements, concrete pavements, concrete products and immobilization of toxic metal bearing waste that are resistant to heat and aggressive environment. Geopolymers gain 70% of the final strength in first 3–4 h of curing.

1,078 citations

Journal ArticleDOI
TL;DR: In this paper, three strategies of CO2 reduction including energy saving, carbon separation and storage as well as utilizing alternative materials in detail have been reviewed and the barriers against worldwide deployment of such strategies are identified and comprehensively described.

903 citations

Journal ArticleDOI
TL;DR: In this paper, the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash is discussed, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials.
Abstract: The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives fo...

862 citations

Journal ArticleDOI
TL;DR: In this paper, a fly ash-based geopolymer concrete for curing in ambient condition can be proportioned for desirable workability, setting time, and compressive strength using ground granulated blast-furnace slag (GGBFS) as a small part of the binder.

855 citations

Journal ArticleDOI
TL;DR: Alkali-activated binders have emerged as an alternative to OPC binders, which seems to have superior durability and environmental impact as mentioned in this paper, and the proper terminology to designate these new binders will be discussed.

800 citations