scispace - formally typeset
Search or ask a question
Author

Sahar Saremi

Bio: Sahar Saremi is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Ferroelectricity & Dielectric. The author has an hindex of 19, co-authored 31 publications receiving 1010 citations. Previous affiliations of Sahar Saremi include Lawrence Berkeley National Laboratory.

Papers
More filters
Journal ArticleDOI
01 Apr 2019-Nature
TL;DR: In this paper, a room-temperature polar-skyrmion bubbles were discovered in a lead titanate layer confined by strontium titanate layers, which were imaged by atomic-resolution scanning transmission electron microscopy.
Abstract: Complex topological configurations are fertile ground for exploring emergent phenomena and exotic phases in condensed-matter physics. For example, the recent discovery of polarization vortices and their associated complex-phase coexistence and response under applied electric fields in superlattices of (PbTiO3)n/(SrTiO3)n suggests the presence of a complex, multi-dimensional system capable of interesting physical responses, such as chirality, negative capacitance and large piezo-electric responses1-3. Here, by varying epitaxial constraints, we discover room-temperature polar-skyrmion bubbles in a lead titanate layer confined by strontium titanate layers, which are imaged by atomic-resolution scanning transmission electron microscopy. Phase-field modelling and second-principles calculations reveal that the polar-skyrmion bubbles have a skyrmion number of +1, and resonant soft-X-ray diffraction experiments show circular dichroism, confirming chirality. Such nanometre-scale polar-skyrmion bubbles are the electric analogues of magnetic skyrmions, and could contribute to the advancement of ferroelectrics towards functionalities incorporating emergent chirality and electrically controllable negative capacitance.

383 citations

Journal ArticleDOI
03 Jul 2020-Science
TL;DR: It is shown that high-energy ion bombardment improves the energy storage performance of relaxor ferroelectric thin films and suggests that postprocessing may be important for developing the next generation of capacitors.
Abstract: Dielectric capacitors can store and release electric energy at ultrafast rates and are extensively studied for applications in electronics and electric power systems Among various candidates, thin films based on relaxor ferroelectrics, a special kind of ferroelectric with nanometer-sized domains, have attracted special attention because of their high energy densities and efficiencies We show that high-energy ion bombardment improves the energy storage performance of relaxor ferroelectric thin films Intrinsic point defects created by ion bombardment reduce leakage, delay low-field polarization saturation, enhance high-field polarizability, and improve breakdown strength We demonstrate energy storage densities as high as ~133 joules per cubic centimeter with efficiencies exceeding 75% Deterministic control of defects by means of postsynthesis processing methods such as ion bombardment can be used to overcome the trade-off between high polarizability and breakdown strength

149 citations

Journal ArticleDOI
TL;DR: How these new approaches to strain engineering provide promising routes to control and decouple ferroelectric susceptibilities and create new modes of response not possible in the confines of conventional strain engineering is discussed.
Abstract: Ferroelectrics, with their spontaneous switchable electric polarization and strong coupling between their electrical, mechanical, thermal, and optical responses, provide functionalities crucial for a diverse range of applications. Over the past decade, there has been significant progress in epitaxial strain engineering of oxide ferroelectric thin films to control and enhance the nature of ferroelectric order, alter ferroelectric susceptibilities, and to create new modes of response which can be harnessed for various applications. This review aims to cover some of the most important discoveries in strain engineering over the past decade and highlight some of the new and emerging approaches for strain control of ferroelectrics. We discuss how these new approaches to strain engineering provide promising routes to control and decouple ferroelectric susceptibilities and create new modes of response not possible in the confines of conventional strain engineering. To conclude, we will provide an overview and prospectus of these new and interesting modalities of strain engineering helping to accelerate their widespread development and implementation in future functional devices.

113 citations

Journal ArticleDOI
TL;DR: The bending-induced polarization of barium titanate single crystals has been measured with an aim to elucidate the origin of the large difference between theoretically predicted and experimentally measured flexoelectricity in this material, and it is indicated that part of the difference is due to polar regions that exist above T(C) and up to T*≈200-225 °C.
Abstract: The bending-induced polarization of barium titanate single crystals has been measured with an aim to elucidate the origin of the large difference between theoretically predicted and experimentally measured flexoelectricity in this material The results indicate that part of the difference is due to polar regions (short-range order) that exist above ${T}_{C}$ and up to ${T}^{*}\ensuremath{\approx}200--225\text{ }\ifmmode^\circ\else\textdegree\fi{}\mathrm{C}$ Above ${T}^{*}$, however, the flexovoltage coefficient still shows an unexpectedly large anisotropy for a cubic material, with (001)-oriented crystals displaying 10 times more flexoelectricity than (111)-oriented crystals Theoretical analysis shows that this anisotropy cannot be a bulk property, and we therefore interpret it as indirect evidence for the theoretically predicted but experimentally elusive contribution of surface piezoelectricity to macroscopic bending-induced polarization

97 citations

Journal ArticleDOI
TL;DR: Polar skyrmions are topologically protected structures that can exist in (PbTiO 3 ) n /(SrTiO3 ) n superlattices and it is shown that they have negative permittivity at the surface, and that they can undergo a reversible phase transition with large dielectric tunability under an electric field.
Abstract: Topological solitons such as magnetic skyrmions have drawn attention as stable quasi-particle-like objects. The recent discovery of polar vortices and skyrmions in ferroelectric oxide superlattices has opened up new vistas to explore topology, emergent phenomena and approaches for manipulating such features with electric fields. Using macroscopic dielectric measurements, coupled with direct scanning convergent beam electron diffraction imaging on the atomic scale, theoretical phase-field simulations and second-principles calculations, we demonstrate that polar skyrmions in (PbTiO3)n/(SrTiO3)n superlattices are distinguished by a sheath of negative permittivity at the periphery of each skyrmion. This enhances the effective dielectric permittivity compared with the individual SrTiO3 and PbTiO3 layers. Moreover, the response of these topologically protected structures to electric field and temperature shows a reversible phase transition from the skyrmion state to a trivial uniform ferroelectric state, accompanied by large tunability of the dielectric permittivity. Pulsed switching measurements show a time-dependent evolution and recovery of the skyrmion state (and macroscopic dielectric response). The interrelationship between topological and dielectric properties presents an opportunity to simultaneously manipulate both by a single, and easily controlled, stimulus, the applied electric field.

89 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, an ionic field effect transistor (termed an iFET) is described, in which gate-controlled Li ion intercalation modulates the material properties of layered crystals of 1T-TaS2.
Abstract: The ability to tune material properties using gating by electric fields is at the heart of modern electronic technology. It is also a driving force behind recent advances in two-dimensional systems, such as the observation of gate electric-field-induced superconductivity and metal-insulator transitions. Here, we describe an ionic field-effect transistor (termed an iFET), in which gate-controlled Li ion intercalation modulates the material properties of layered crystals of 1T-TaS2. The strong charge doping induced by the tunable ion intercalation alters the energetics of various charge-ordered states in 1T-TaS2 and produces a series of phase transitions in thin-flake samples with reduced dimensionality. We find that the charge-density wave states in 1T-TaS2 collapse in the two-dimensional limit at critical thicknesses. Meanwhile, at low temperatures, the ionic gating induces multiple phase transitions from Mott-insulator to metal in 1T-TaS2 thin flakes, with five orders of magnitude modulation in resistance, and superconductivity emerges in a textured charge-density wave state induced by ionic gating. Our method of gate-controlled intercalation opens up possibilities in searching for novel states of matter in the extreme charge-carrier-concentration limit.

437 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental principles of energy storage in dielectric capacitors are introduced and a comprehensive review of the state-of-the-art is presented. But the authors do not consider the use of lead-free materials in high-temperature applications, since their toxicity raises concern over their use in consumer applications.
Abstract: Materials exhibiting high energy/power density are currently needed to meet the growing demand of portable electronics, electric vehicles and large-scale energy storage devices. The highest energy densities are achieved for fuel cells, batteries, and supercapacitors, but conventional dielectric capacitors are receiving increased attention for pulsed power applications due to their high power density and their fast charge-discharge speed. The key to high energy density in dielectric capacitors is a large maximum but small remanent (zero in the case of linear dielectrics) polarization and a high electric breakdown strength. Polymer dielectric capacitors offer high power/energy density for applications at room temperature, but above 100 °C they are unreliable and suffer from dielectric breakdown. For high-temperature applications, therefore, dielectric ceramics are the only feasible alternative. Lead-based ceramics such as La-doped lead zirconate titanate exhibit good energy storage properties, but their toxicity raises concern over their use in consumer applications, where capacitors are exclusively lead free. Lead-free compositions with superior power density are thus required. In this paper, we introduce the fundamental principles of energy storage in dielectrics. We discuss key factors to improve energy storage properties such as the control of local structure, phase assemblage, dielectric layer thickness, microstructure, conductivity, and electrical homogeneity through the choice of base systems, dopants, and alloying additions, followed by a comprehensive review of the state-of-the-art. Finally, we comment on the future requirements for new materials in high power/energy density capacitor applications.

396 citations

Journal Article
TL;DR: Ferroelectricity in BaTiO3 crystals is used to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature, correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude.
Abstract: Controlling magnetism by means of electric fields is a key issue for the future development of low-power spintronics1. Progress has been made in the electrical control of magnetic anisotropy2, domain structure3,4, spin polarization5,6 or critical temperatures7,8. However, the ability to turn on and o robust ferromagnetism at room temperature and above has remained elusive. Here we use ferroelectricity in BaTiO3 crystals to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature. The detailed analysis of the data in the light of first-principles calculations indicate that the phenomenon is mediated by both strain and field e ects from the BaTiO3. Our results correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude and open new perspectives for the use of ferroelectrics in magnetic storage and spintronics.

371 citations

Journal Article
TL;DR: In this paper, a combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films.
Abstract: We report on nanoscale strain gradients in ferroelectric HoMnO3 epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane x-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders of magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves.

285 citations

Journal ArticleDOI
TL;DR: The materials science and materials chemistry of magnetic skyrmions are described using the classification scheme of theskyrmion forming microscopic mechanisms, including the generation of emergent magnetic and electric field by statics and dynamics of skrymions and the inherent magnetoelectric effect.
Abstract: Skyrmion, a concept originally proposed in particle physics half a century ago, can now find the most fertile field for its applicability, that is, the magnetic skyrmion realized in helimagnetic materials. The spin swirling vortex-like texture of the magnetic skyrmion can define the particle nature by topology; that is, all the constituent spin moments within the two-dimensional sheet wrap the sphere just one time. Such a topological nature of the magnetic skyrmion can lead to extraordinary metastability via topological protection and the driven motion with low electric-current excitation, which may promise future application to spintronics. The skyrmions in the magnetic materials frequently show up as the crystal lattice form, e.g., hexagonal lattice, but sometimes as isolated or independent particles. These skyrmions in magnets were initially found in acentric magnets, such as chiral, polar, and bilayered magnets endowed with antisymmetric spin exchange interaction, while the skyrmion host materials have been explored in a broader family of compounds including centrosymmetric magnets. This review describes the materials science and materials chemistry of magnetic skyrmions using the classification scheme of the skyrmion forming microscopic mechanisms. The emergent phenomena and functions mediated by skyrmions are described, including the generation of emergent magnetic and electric field by statics and dynamics of skrymions and the inherent magnetoelectric effect. The other important magnetic topological defects in two or three dimensions, such as biskyrmions, antiskyrmions, merons, and hedgehogs, are also reviewed in light of their interplay with the skyrmions.

284 citations