scispace - formally typeset
Search or ask a question
Author

Sailendra Nath Dey

Bio: Sailendra Nath Dey is an academic researcher from Indian Institute of Chemical Biology. The author has contributed to research in topics: Mitochondrial carrier & Translation (biology). The author has an hindex of 4, co-authored 4 publications receiving 157 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that baicalein (BLN), a potent topoisomerase IB inhibitor, generates an oxidative stress in the parasites leading to altered physiological and morphological parameters, which are characteristic of PCD, and conditional antisense knockdown of LdEndoG provides protection against PCD.
Abstract: In the post-genomic perspective, the quest of programmed cell death (PCD) mechanisms in kinetoplastid parasites lies in the identification and characterization of cell death executer proteins. Here, we show that baicalein (BLN), a potent topoisomerase IB inhibitor, generates an oxidative stress in the parasites leading to altered physiological and morphological parameters, which are characteristic of PCD. For the first time we elucidate that, caspase-independent activation of a novel effector molecule, endonuclease G (LdEndoG), mediates BLN-induced cell death. Functional characterization of LdEndoG identifies Flap endonuclease-1 (LdFEN-1) and LdTatD-like nuclease as other effector molecules. BLN treatment translocates LdEndoG from mitochondria to nucleus, where it forms separate complexes with LdFEN-1 and LdTatD to constitute a DNA 'degradesome' unique to these parasites. Conditional antisense knockdown of LdEndoG provides protection against PCD. This knowledge paves the path toward a better understanding of the PCD pathway in simpler systems, which could be exploited in anti-leishmanial chemotherapy.

61 citations

Journal ArticleDOI
TL;DR: Enhanced levels of 9‐O‐acetylated GD3 (9‐ O‐AcGD3) are observed in the lymphoblasts of patients and leukaemic cell line versus disialoganglioside GD3 in comparison to the normal cells, suggesting that O‐acetYLation of GD3, like that of O‐ acetylated sialoglycoproteins, might be a general strategy adopted byLeukaemic blasts towards survival in ALL.
Abstract: We have previously demonstrated induction of O-acetylated sialoglycoproteins on lymphoblasts of childhood acute lymphoblastic leukaemia (ALL). These molecules promote survival of lymphoblasts by preventing apoptosis. Although O-acetylated sialoglycoproteins are over expressed, the status of O-acetylation of gangliosides and their role in lymphoblasts survival remains to be explored in ALL patients. Here, we have observed enhanced levels of 9-O-acetylated GD3 (9-O-AcGD3) in the lymphoblasts of patients and leukaemic cell line versus disialoganglioside GD3 in comparison to the normal cells. Localization of GD3 and 9-O-AcGD3 on mitochondria of patient's lymphoblasts has been demonstrated by immuno-electron microscopy. The exogenous administration of GD3-induced apoptosis in lymphoblasts as evident from the nuclear fragmentation and sub G0/G1 apoptotic peak. In contrast, 9-O-AcGD3 failed to induce such apoptosis. We further explored the mitochondria-dependent pathway triggered during GD3-induced apoptosis in lymphoblasts. GD3 caused a time-dependent depolarization of mitochondrial membrane potential, release of cytochrome c and 7.4- and 8-fold increased in caspase 9 and caspase 3 activity respectively. However, under identical conditions, an equimolar concentration of 9-O-AcGD3 failed to induce similar effects. Interestingly, 9-O-AcGD3 protected the lymphoblasts from GD3-induced apoptosis when administered in equimolar concentrations simultaneously. In situ de-O-acetylation of 9-O-AcGD3 with sodium salicylate restores the GD3-responsiveness to apoptotic signals. Although both GD3 and 9-O-acetyl GD3 localize to mitochondria, these two structurally related molecules may play different roles in ALL-disease biology. Taken together, our results suggest that O-acetylation of GD3, like that of O-acetylated sialoglycoproteins, might be a general strategy adopted by leukaemic blasts towards survival in ALL.

52 citations

Journal ArticleDOI
TL;DR: By a combination of antibody inhibition, photochemical cross-linking, and immunoprecipitation, it was shown that binding of tRNAIle to a 21-kDa component of the complex is dependent upon tRNATyr, whilebinding of tR NATyr to a 45-KDa component is inhibited by t RNAIle, suggesting this “ping-pong” mechanism may be an effective means to maintain a balanced tRNA pool for mitochondrial translation.
Abstract: The mitochondrial genomes of a wide variety of species contain an insufficient number of functional tRNA genes, and translation of mitochondrial mRNAs is sustained by import of nucleus-encoded tRNAs. In Leishmania, transfer of tRNAs across the inner membrane can be regulated by positive and negative interactions between them. To define the factors involved in such interactions, a large multisubunit complex (molecular mass, approximately 640 kDa) from the inner mitochondrial membrane of the kinetoplastid protozoon Leishmania, consisting of approximately 130-A particles, was isolated. The complex, when incorporated into phospholipid vesicles, induced specific, ATP- and proton motive force-dependent transfer of Leishmania tRNA(Tyr) as well as of oligoribonucleotides containing the import signal YGGYAGAGC. Moreover, allosteric interactions between tRNA(Tyr) and tRNA(Ile) were observed in the RNA import complex-reconstituted system, indicating the presence of primary and secondary tRNA binding sites within the complex. By a combination of antibody inhibition, photochemical cross-linking, and immunoprecipitation, it was shown that binding of tRNA(Ile) to a 21-kDa component of the complex is dependent upon tRNA(Tyr), while binding of tRNA(Tyr) to a 45-kDa component is inhibited by tRNA(Ile). This "ping-pong" mechanism may be an effective means to maintain a balanced tRNA pool for mitochondrial translation.

37 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the nuclear morphology of cells in the substantia nigra pars compacta (SNpc) region of rats following unilateral intranigral infusion of the active metabolite, 1-methyl-4-phenyl pyridinium ion (MPP+), which resulted in a dose-dependent and prolonged dopamine depletion in the ipsilateral striatum.
Abstract: The potent parkinsonian neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) is known to cause dopaminergic neurodegeneration in nigrostriatal system. In the present study we investigated the nuclear morphology of cells in the substantia nigra pars compacta (SNpc) region of rats following unilateral intranigral infusion of the active metabolite, 1-methyl-4-phenyl pyridinium ion (MPP+), which resulted in a dose-dependent and prolonged dopamine depletion in the ipsilateral striatum. There appeared a substantial loss of tyrosine hydroxylase immunoreactive neurons in the SNpc that received the neurotoxin. Specific nuclear staining with Hoechst 33342 or acridine orange revealed bright pyknotic, shrunken, distorted nuclei and condensed chromatin with perinuclear nucleolus respectively following visualization with the former and latter dyes in the ipsilateral SNpc, as compared to the round, intact nuclei and centrally positioned nucleolus in the contralateral side. Ultrastructural details of the nucleus under transmission electron microscope confirmed distorted nuclear organization with shrunken or condensed nuclei and disrupted nuclear membrane. These features are typical of nucleus undergoing apoptosis, and suggest that MPP+ causes dopaminergic neuronal death through an apoptotic mode. Typical laddering pattern of genomic DNA isolated from the ipsilateral SN in agarose gel electrophoresis conclusively established apoptosis following intranigral administration of MPP+ in rats.

16 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: These findings prove for the first time the functionality of imported tRNAs in human mitochondria in vivo and highlight the potential for exploiting the RNA import pathway to treat patients with mtDNA diseases.
Abstract: Mitochondrial DNA (mtDNA) mutations are an important cause of human disease for which there is no efficient treatment. Our aim was to determine whether the A8344G mitochondrial tRNA(Lys) mutation, which can cause the MERRF (myoclonic epilepsy with ragged-red fibers) syndrome, could be complemented by targeting tRNAs into mitochondria from the cytosol. Import of small RNAs into mitochondria has been demonstrated in many organisms, including protozoans, plants, fungi and animals. Although human mitochondria do not import tRNAs in vivo, we previously demonstrated that some yeast tRNA derivatives can be imported into isolated human mitochondria. We show here that yeast tRNALys derivatives expressed in immortalized human cells and in primary human fibroblasts are partially imported into mitochondria. Imported tRNAs are correctly aminoacylated and are able to participate in mitochondrial translation. In transmitochondrial cybrid cells and in patient-derived fibroblasts bearing the MERRF mutation, import of tRNALys is accompanied by a partial rescue of mitochondrial functions affected by the mutation such as mitochondrial translation, activity of respiratory complexes, electrochemical potential across the mitochondrial membrane and respiration rate. Import of a tRNALys with a mutation in the anticodon preventing recognition of the lysine codons does not lead to any rescue, whereas downregulation of the transgenic tRNAs by small interfering RNA (siRNA) transiently abolishes the functional rescue, showing that this rescue is due to the import. These findings prove for the first time the functionality of imported tRNAs in human mitochondria in vivo and highlight the potential for exploiting the RNA import pathway to treat patients with mtDNA diseases.

153 citations

Journal ArticleDOI
TL;DR: All mitochondrial aminoacyl-tRNA synthetases and many tRNAs are imported from the cytosol into the mitochondria in eukaryotic cells and their origin and their import into the organelle have been studied in evolutionary distinct organisms.
Abstract: During evolution, most of the bacterial genes from the ancestral endosymbiotic α-proteobacteria at the origin of mitochondria have been either lost or transferred to the nuclear genome. A crucial evolutionary step was the establishment of macromolecule import systems to allow the come back of proteins and RNAs into the organelle. Paradoxically, the few mitochondria-encoded protein genes remain essential and must be translated by a mitochondrial translation machinery mainly constituted by nucleus-encoded components. Two crucial partners of the mitochondrial translation machinery are the aminoacyl-tRNA synthetases and the tRNAs. All mitochondrial aminoacyl-tRNA synthetases and many tRNAs are imported from the cytosol into the mitochondria in eukaryotic cells. During the last few years, their origin and their import into the organelle have been studied in evolutionary distinct organisms and we review here what is known in this field.

133 citations

Journal ArticleDOI
TL;DR: The characterization of both direct and co-import mechanisms involving distinct protein-import factors is in agreement with a polyphyletic origin of tRNA import.

122 citations

Journal ArticleDOI
TL;DR: The markers most frequently used to analyze cell death in protozoan parasites are discussed, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability.
Abstract: The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.

122 citations

Journal ArticleDOI
TL;DR: These findings identify unexpected components of the tRNA import machinery and suggest that the plant tRNAs import pathway has evolved by recruiting multifunctional proteins.
Abstract: In plants, as in most eukaryotic cells, import of nuclear-encoded cytosolic tRNAs is an essential process for mitochondrial biogenesis. Despite its broad occurrence, the mechanisms governing RNA transport into mitochondria are far less understood than protein import. This article demonstrates by Northwestern and gel-shift experiments that the plant mitochondrial voltage-dependent anion channel (VDAC) protein interacts with tRNA in vitro. It shows also that this porin, known to play a key role in metabolite transport, is a major component of the channel involved in the tRNA translocation step through the plant mitochondrial outer membrane, as supported by inhibition of tRNA import into isolated mitochondria by VDAC antibodies and Ruthenium red. However VDAC is not a tRNA receptor on the outer membrane. Rather, two major components from the TOM (translocase of the outer mitochondrial membrane) complex, namely TOM20 and TOM40, are important for tRNA binding at the surface of mitochondria, suggesting that they are also involved in tRNA import. Finally, we show that proteins and tRNAs are translocated into plant mitochondria by different pathways. Together, these findings identify unexpected components of the tRNA import machinery and suggest that the plant tRNA import pathway has evolved by recruiting multifunctional proteins.

110 citations