scispace - formally typeset
Search or ask a question
Author

Sajeda Meghji

Bio: Sajeda Meghji is an academic researcher from University College London. The author has contributed to research in topics: Bone resorption & Resorption. The author has an hindex of 39, co-authored 78 publications receiving 5003 citations. Previous affiliations of Sajeda Meghji include University of London & UCL Eastman Dental Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: Much greater attention should be focused on the problem of bacterially induced bone remodelling in order to define pathogenetic mechanisms which could be therapeutic targets for the development of new treatment modalities.
Abstract: Normal bone remodelling requires the coordinated regulation of the genesis and activity of osteoblast and osteoclast lineages. Any interference with these integrated cellular systems can result in dysregulation of remodelling with the consequent loss of bone matrix. Bacteria are important causes of bone pathology in common conditions such as periodontitis, dental cysts, bacterial arthritis, and osteomyelitis. It is now established that many of the bacteria implicated in bone diseases contain or produce molecules with potent effects on bone cells. Some of these molecules, such as components of the gram-positive cell walls (lipoteichoic acids), are weak stimulators of bone resorption in vitro, while others (PMT, cpn60) are as active as the most active mammalian osteolytic factors such as cytokines like IL-1 and TNF. The complexity of the integration of bone cell lineage development means that there are still question marks over the mechanism of action of many well-known bone-modulatory molecules such as parathyroid hormone. The key questions which must be asked of the now-recognized bacterial bone-modulatory molecules are as follows: (i) what cell population do they bind to, (ii) what is the nature of the receptor and postreceptor events, and (iii) is their action direct or dependent on the induction of secondary extracellular bone-modulating factors such as cytokines, eicosanoids, etc. In the case of LPS, this ubiquitous gram-negative polymer probably binds to osteoblasts or other cells in bone through the CD14 receptor and stimulates them to release cytokines and eicosanoids which then induce the recruitment and activation of osteoclasts. This explains the inhibitor effects of nonsteroidal and anticytokine agents on LPS-induced bone resorption. However, other bacterial factors such as the potent toxin PMT may act by blocking the normal maturation pathway of the osteoblast lineage, thus inducing dysregulation in the tightly regulated process of resorption and replacement of bone matrix. At the present time, it is not possible to define a general mechanism by which bacteria promote loss of bone matrix. Many bacteria are capable of stimulating bone matrix loss, and the information available would suggest that each organism possesses different factors which interact with bone in different ways. With the rapid increase in antibiotic resistance, particularly with Staphylococcus aureus and M. tuberculosis, organisms responsible for much bone pathology in developed countries only two generations ago, we would urge that much greater attention should be focused on the problem of bacterially induced bone remodelling in order to define pathogenetic mechanisms which could be therapeutic targets for the development of new treatment modalities.

495 citations

Journal ArticleDOI
TL;DR: Therapeutic ultrasound induces in vitro cell proliferation, collagen/NCP production, bone formation, and angiogenesis, and these findings support its use in prospective clinical trials for the prevention and treatment of osteoradionecrosis.

332 citations

Journal ArticleDOI
TL;DR: The experiments reveal a previously‐overlooked mechanism of considerable potential importance for the regulation of bone destruction, which may help explain the bone loss associated with a wide range of pathological states involving local or systemic hypoxia, and emphasize the importance of the vasculature in bone.
Abstract: Hypoxia is known to act as a general stimulator of cells derived from marrow precursors. We investigated the effect of oxygen tension on the formation and function of osteoclasts, the cells responsible for bore resorption, which are of promonocytic origin. Using 7- and 13-day cultures of mouse marrow cells on ivory discs, we found that reducing oxygen tension from the ambient atmospheric level of 20% by increasing the proportion of nitrogen caused progressive increases in the formation of multinucleated osteoclasts and resorption pits. Peak effects occurred in 2% oxygen, where stimulations of resorption up to 21-fold were measured. Significant stimulations of osteoclast formation and resorption were observed even in severely hypoxic cultures gassed with 0.2% oxygen. Short-term cultures of cells disaggregated from rat bones indicated that hypoxia did not alter the resorptive activity of mature osteoclasts, but reduced their survival or adherence. In 3-day organ cultures of mouse calvarial bones, exposure to 2% oxygen resulted in maximal, fivefold stimulation of osteoclast-mediated calcium release, an effect equivalent to that of prostaglandin E(2) (PGE(2)), a reference osteolytic agent. Hypoxia also caused a moderate acidosis in calvarial cultures, presumably as a result of increased anaerobic metabolism; this observation is significant because osteoclast activation is dependent on extracellular acidification. Our experiments reveal a previously-overlooked mechanism of considerable potential importance for the regulation of bone destruction. These findings may help explain the bone loss associated with a wide range of pathological states involving local or systemic hypoxia, and emphasize the importance of the vasculature in bone.

284 citations

Journal ArticleDOI
01 Jun 1999-Cytokine
TL;DR: Results show that therapeutic ultrasound stimulates the production of angiogenic factors such as IL-8, bFGF and VEGF, which may be one of the mechanisms through which therapeutic ultrasound induces angiogenesis and healing.

233 citations

Journal ArticleDOI
TL;DR: It is reported that S. aureus is internalized by human osteoblasts, and it is proposed that internalization occurs via a receptor-mediated pathway, requiring the participation of cytoskeletal elements, principally actin.
Abstract: Staphylococcus aureus is an important bone pathogen, and evidence shows that this organism is internalized by chick osteoblasts. Here we report that S. aureus is internalized by human osteoblasts. Internalization was inhibited by monodansylcadaverine and cytochalasin D and to a lesser extent by ouabain, monensin, colchicine, and nocodazole. We propose that internalization occurs via a receptor-mediated pathway, requiring the participation of cytoskeletal elements, principally actin.

187 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: P2X receptors are membrane ion channels that open in response to the binding of extracellular ATP and are involved in the initiation of afferent signals in several viscera and play a key role in sensing tissue-damaging and inflammatory stimuli.
Abstract: P2X receptors are membrane ion channels that open in response to the binding of extracellular ATP. Seven genes in vertebrates encode P2X receptor subunits, which are 40–50% identical in amino acid ...

2,800 citations

Journal ArticleDOI
TL;DR: All the available evidence suggests that multi-antibiotic resistant strains are as easily killed by PDT as naive strains, and that bacteria will not readily develop resistance to PDT.
Abstract: Photodynamic therapy (PDT) employs a non-toxic dye, termed a photosensitizer (PS), and low intensity visible light which, in the presence of oxygen, combine to produce cytotoxic species. PDT has the advantage of dual selectivity, in that the PS can be targeted to its destination cell or tissue and, in addition, the illumination can be spatially directed to the lesion. PDT has previously been used to kill pathogenic microorganisms in vitro, but its use to treat infections in animal models or patients has not, as yet, been much developed. It is known that Gram-(−) bacteria are resistant to PDT with many commonly used PS that will readily lead to phototoxicity in Gram-(+) species, and that PS bearing a cationic charge or the use of agents that increase the permeability of the outer membrane will increase the efficacy of killing Gram-(−) organisms. All the available evidence suggests that multi-antibiotic resistant strains are as easily killed by PDT as naive strains, and that bacteria will not readily develop resistance to PDT. Treatment of localized infections with PDT requires selectivity of the PS for microbes over host cells, delivery of the PS into the infected area and the ability to effectively illuminate the lesion. Recently, there have been reports of PDT used to treat infections in selected animal models and some clinical trials: mainly for viral lesions, but also for acne, gastric infection by Helicobacter pylori and brain abcesses. Possible future clinical applications include infections in wounds and burns, rapidly spreading and intractable soft-tissue infections and abscesses, infections in body cavities such as the mouth, ear, nasal sinus, bladder and stomach, and surface infections of the cornea and skin.

1,728 citations

Journal ArticleDOI
TL;DR: This review summarizes available data on these beneficial effects of flavonoids and suggests that the compounds may possess significant antihepatotoxic, antiallergic, anti-inflammatory, antiosteoporotic and even antitumor activities.

1,291 citations

Journal ArticleDOI
TL;DR: While TNF-alpha alone does not induce osteoclastogenesis, it does so both in vitro and in vivo by directly targeting macrophages within a stromal environment that expresses permissive levels of RANKL, indicating a more convenient target in arresting inflammatory osteolysis.
Abstract: While TNF-α is pivotal to the pathogenesis of inflammatory osteolysis, the means by which it recruits osteoclasts and promotes bone destruction are unknown. We find that a pure population of murine osteoclast precursors fails to undergo osteoclastogenesis when treated with TNF-α alone. In contrast, the cytokine dramatically stimulates differentiation in macrophages primed by less than one percent of the amount of RANKL (ligand for the receptor activator of NF-κB) required to induce osteoclast formation. Mirroring their synergistic effects on osteoclast differentiation, TNF-α and RANKL markedly potentiate NF-κB and stress-activated protein kinase/c-Jun NH2-terminal kinase activity, two signaling pathways essential for osteoclastogenesis. In vivo administration of TNF-α prompts robust osteoclast formation in chimeric animals in which β-galactosidase positive, TNF-responsive macrophages develop within a TNF-nonresponsive stromal environment. Thus, while TNF-α alone does not induce osteoclastogenesis, it does so both in vitro and in vivo by directly targeting macrophages within a stromal environment that expresses permissive levels of RANKL. Given the minuscule amount of RANKL sufficient to synergize with TNF-α to promote osteoclastogenesis, TNF-α appears to be a more convenient target in arresting inflammatory osteolysis.

1,280 citations